Part Seven

Protection mechanisms control access to a system by limiting the types
of file access permitted to users. In addition, protection must ensure
that only processes that have gained proper authorization from the
operating system can operate on memory segments, the CPU, and other
resources.

systern prevents unauthorized access, malicious destruction or afteration
of data, and accidental introduction of inconsistency.
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The processes in an operating system must be protected from one another’s
activities. To provide such protection, we can use various mechanisms to ensure
that only processes that have gained proper authorization from the operating
system can operate on the files, memory segments, CPU, and other resources
of a system.

Protection refers to a mechanism for controlling the access of programs,
processes, or users to the resources defined by a computer system. This
mechanism must provide a means for specifying the controls to be imposed,
together with a means of enforcement. We distinguish between protection and
security, which is a measure of confidence that the integrity of a system and
its data will be preserved. Security assurance is a much broader topic than is
protection, and we address it in Chapter 18.

As computer systems have become more sophisticated and pervasive in their
applications, the need to protect their integrity has also grown. Protection was
originally conceived as an adjunct to multipropramming operating systems,
so that untrustwerthy users might safely share a common logical name space,
such as a directory of files, or share a common physical name space, such as
memory. Modern protection concepts have evolved to increase the reliability
of any complex system that makes use of shared resources.

We need to provide protection for several reasons. The most obvious is
the need to-prevent mischievous, intentional violation of an access restriction
by a user. Of more general importance, however, is the need to ensure that
each program component active in a system uses system resources only in
ways consistent with stated policies. This requirement is an absolute one for a
reliable system.

Protection can improve reliability by detecting latent errors at the interfaces
between component subsystems. Farly detection of interface errors can often
prevent contamination of a healthy subsystem by a malfunctioning subsystem.
An unprotected resource cannot defend against use (or misuse) by an unau-
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thorized or incompetent user, A protection-oriented system provides means to
distinguish between authorized and unauthorized usage.

The role of protection in a computer system is to provide a mechanism for
the enforcement of the policies governing resource use. These policies can be
established in a variety of ways. Some are fixed in the design of the system,
while others are formulated by the management of a system. Still others are
defined by the individual users to protect their own files and programs. A
protection system must have the flexibility to enforce a variety of policies,

Policies for resource use may vary by application, and they may change
aver time. For these reasons, protection is no longer the concern solely of the
designer of an operating system. The application programmer needs to use
protection mechanisms as well, to guard resources created and supported
by an application subsystem against misuse. In this chapter, we describe
the protection mechanisms the operating system should provide, so that
application designers can use them in designing their own protection software.

Note that mechanisms are distinct from policies. Mechanisms determine Jiow
something will be done; policies decide what will be done. The separation
of policy and mechanism is important for flexibility. Policies are likely to
change from piace to place or time to time. In the worst case, every change
in policy would require a ¢hange in the underlying mechanism. Using general
mechanisms enables us to avoid such a situation.

Frequently, a guiding principle can be used throughout a project, such as
the design of an operating system. Foliowing this principle simplifies design
decisions and keeps the system consistent and easy to understand. A key,
time-tested guiding principle for protection is the principle of least privilege. [t
dictates that programs, users, and even systems be givenjust enough privileges
to perform their tasks.

Consider the analogy of a security guard with a passkey. If this key allows
the guard into just the public areas that she guards, then misuse of the key
will result in minimal damage. If, however, the passkey allows access to all
areas, then damage from its being lost, stolen, misused, copied, or otherwise
compromised will be much greater.

An operating system following the principle of least privilege implements
its features, programs, system calls, and data structures so that failure or
compromise of a component does the minimum damage and allows the
minimum damage to be done. The overflow of a buffer in a system daemon
might cause the daemon to fail, for example, but should not allow the execution
ol code from the process’s stack that would enable a remote user to gain
maxuiim privileges and access to the entire system (as happens too often
today).

Such an operating system also provides syster calls and services that
allow applications to be written with fine-grained access controls. Tt provides
mechanisms to enable privileges when they are needed and to disable them
when they are not needed. Also beneficial is the creation of audit trails fo-
all privileged function access. The audit trail allows the programmer, systems
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administrator, or law-enforcement officer to trace all protection and security
activities on the system.

Managing users with the principle of least privilege entails creating a
separate account for each user, with just the privileges that the user needs. An
operator who needs to mount tapes and backup files on the system has access
to just those comumnands and files needed to accomplish the job. Some systems
implement role-based access control (RBAC) to provide this functionality.

Computers implemented ina computing facility under the principle of least
privilege can be limited to running specific services, accessing specific remote
hosts via specific services, and doing so during specific times. Typically, these
restrictions are implemented through enabling or disabling each service and
through access control lists, as described in Section 10.6.2 and 17.6.

The principle of least privilege can help produce a more secure computing
environment. Unfortunately, it frequently does not. For example, Windows
2000 has a complex protection scheme at its core and yet has many security
holes. By comparison, Solaris is considered relatively secure, even though it
is a variant of UNIX, which historically was designed with little protection
in mind. One reason for the difference may be that Windows 2000 has more
lines of code and more services than Solaris and thus has more to secure and
protect. Another reason could be that the protection scheme in Windows 2000
is incomplete or protects the wrong aspects of the operating system, leaving
other areas vulnerable.

ERN1 B SR

A computer system is a collection of processes and objects. By objects, we mean
both hardware objects (such as the CPU, memory segments, printers, disks, and
tape drives) and software objects (such as files, programs, and semaphores).
Each object has a unique name that differentiates it from all other objects in the
system, and each can be accessed only through well-defined and meaningful
operations. Objects are essentially abstract data types.

The operations that are possible may depend on the object. For example,
a {I'U can only be executed on. Memory segments can be read and written,
whereas a CD-ROM or DVD-ROM can only be read. Tape drives can be read,
written, and rewound. Data files can be created, opened, read, written, closed,
and deleted; program files can be read, written, executed, and deleted.

A process should be allowed to access only those resources for which it
has authorization. Furthermore, at any time, a process should be able to access
only those resources that it currently requires to complete its task. This second
requirement, commonly referred to as the need-fo-know principle, is useful in
limiting the amount of damage a faulty process can cause in the system. For
example, when process p invokes procedure A(), the procedure should be
allowed to access only its own variables and the formal parameters passed
to it; it should not be able to access all the variables of process p. Simi larly,
consider the case where process p invokes a compiler to compile a particular
file. The compiler should not be able to access files arbitrarily but should have
access only to a well-defined subset of files (such as the source file, listing file,
and so on) related to the file to be compiled. Conversely, the compiler may have
private files used for accounting or optimization purposes that process pshould
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not be able to access. The need-to-know principle is similar to the principle of
least privilege discussed in Section 17.2 in that the goals of protection are to
minimize the risks of possible security violations.

17.3.1 Domain Structure

To facilitate this scheme, a process operates within a protection demain, which
specifies the resources that the process may access. Each domain defines a set
of abjects and the types of operations that may be invoked on each object.
The ability to execute an operation on an object is an access right. A domain
is a collection of access rights, each of which is an ordered pair <object-name,
rights-set>. For example, if domain D has the access right <file F, {read,write} >,
then a process executing in domain D can both read and write file F ; it cannot,
however, perform any other operation on that object.

Domains do not need to be disjoint; they may share access rights. For
example, in Figure 17.1, we have three domains: Dy, D-, and Dx. The access
right <Oy, {print}> is shared by D, and Ds, implying that a process executing
in either of these two domains can print object Oy. Note that a process must be
executing in domain [ to read and write object Oy, while only processes in
domain [ may execute object Oy.

The association between a process and a domain may be either static, if
the set of resources available to the process is fixed throughout the process’s
lifetime, or dynamic. As might be expected, establishing dynamic protection
domains is more complicated than establishing static protection domains.

If the association between processes and domains is fixed, and we want to
adhere to the need-to-know principle, then a mechanism must be available to
change the content of a domain. The reason stems from the fact that a process
may execute in two different phases and may, for example, need read access
in one phase and write access in another. If a domain is static, we must define
the domain to include both read and write access. However, this arrangement
provides more rights than are needed in each of the two phases, since we have
read access in the phase where we need only write access, and vice versa. Thus,
the need-to-know principle is violated. We must allow the contents of a domain
to be modified so that it always reflects the minimum necessary access rights.

If the association is dynamic, a mechanism is available to allow domain
swiiching, enabling the process to switch from one domain to another. We may
also want to allow the content of a domain to be changed. If we cannot change
the content of a domain, we can provide the same effect by creating a new
domain with the changed content and switching to that new dormain when we
want to change the domain content.

D, D, o,

<< Oy, {read, write} >
< O, {read, write} >
< Oy, {execute} =

< Oy, {execute} >
<< Oy, {read} >

Figure 17.1 System with three protection domains.
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A domain can be realized in a variety of ways:

# FEach user may be a domain. In this case, the set of objects that can be
accessed depends on the identity of the user. Domain switching occurs
when the user is changed —generally when one user logs out and another
user logs in.

Each process may be a domain. In this case, the set of objects that can be
accessed depends on the identity of the process. Domain switching occurs
when one process sends a message to another process and then waits for
a response.

# Each procedure may be a domain. In this case, the set of objects that can be
accessed corresponds to the local variables defined within the procedure.
Domain switching occurs when a procedure call is made.

We discuss domain switching in greater detail in Section 17.4.

Consider the standard dual-mode (monitor—user mode) model of
operating-system execution. When a process executes in monitor mode, it
can execute privileged instructions and thus gain complete control of the
computer system. In contrast, when a process executes in user mode, it can
invoke only nonprivileged instructions. Consequently, it can execute only
within its predefined memory space. These two modes protect the operating
system {executing in monitor domain) from the user processes {executing
in user domain). In a multiprogrammed operating system, two protection
domains are insufficient, since users also want to be protected from one
another. Therefore, a more elaborate scheme is needed. We illustrate such a
scheme by examining two influential operating systems— UNIX and MULTICS
—to see how these concepts have been implemented there.

17.3.2 An Example: UNIX

in the UNIX operating system, a domain is associated with the user. Switching
the domain corresponds to changing the user identification temporarily.
This change is accomplished through the file system as follows. An owner
identification and a domain bit (known as the setuid bit) are associated with
each file. When the setuid bit is ou, and a user executes that file, the user 1D is
set to that of the owner of the tile; when the bit is off, however, the user ID does
not change. For example, when a user A (that is, a user with userIl> = A) starts
executing a file owned by B, whose associated domain bit is off, the useriD of
the process is set to A. When the setuid bit is on, the useriD is set to that of
the owner of the file: B. When the process exits, this temporary userIDy change
ends.

Other methods are used to change domains in operating systems in which
user IDs are used for domain definition, because almost all systems need
to provide such a mechanism. This mechanism is used when an otherwise
privileged facility needs to be made available to the general user population.
For instance, it might be desirable to allow users to access a network without
letting them write their own networking programs. In such a case, on a UNIX
system, the setuid bit on a networking program would be set, causing the user
ID to change when the program was run. The user 1D would change to that
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of a user with network access privilege (such as root, the most powerful user
ID). One problem with this method is that if a user manages to create a file
with user 1D} root and with its setuid bit o, that user can become roof and do
anything and everything on the system. The setuid mechanism is discussed
further in Appendix A.

An alternative to this method used in other operating systems is to place
privileged programs in a special directory. The operating system would be
designed to change the user 1D of any program run from this directory, either
to the equivalent of root or to the user ID of the owner of the directory. This
eliminates one security problem with setuid programs in which crackers create
and hide (using obscure file or directory names) them for later use. This method
is less flexible than that used in UNIX, however,

Even more restrictive, and thus more protective, are systems that simply
do not allow a change of user ID. In these instances, special techniques must
be used to allow users access to privileged facilities. For instance, a daemon
process may be started at bool time and run as a special user 1. Users then
run a separate program, which sends requests to this process whenever they
need to use the facility. This method is used by the TOPS-20 operating system.

In any of these systems, great care must be taken in writing privileged
programs. Any oversight can result in a total lack of protection on the system.
Generally, these programs are the first to be attacked by people trying to
break into a system; unfortunately, the attackers are frequently successful.
For example, security has been breached on many LINIX systems because of the
setuid feature. We discuss sccurity in Chapter 18.

17.3.3 An Exampie: MULTICS

In the MULTICS system, the protection domains are organized hierarchically
into a ring structure. Each ring corresponds to a single domain (Figure 17.2).
The rings are numbered from 0 to 7. Let D; and D, be any two domain rings.
If j < i then D is a subset of D;. That is, a process executimg in domain [},
has more privileges than does a process executing in domain ;. A process
executing in domain 1y has the most privileges. If only two rings exist, this
scheme is equivalent to the monitor -user mode of execution, where monitor
mode corresponds to Dy and user mode corresponds to D).

MULTICS has a segmented address space; each segment is a file, and each
segment is associated with one of the rings. A segment description includes an
entry that identifies the ring number. In addition, it includes three access bits
to control reading, writing, and execution. The association between segments
and rings is a policy decision with which we are not concerned here,

A current-ring-number counter is associated with each process, identifving
the ring in which the process is executin g currently. When a process is executing
In ring i, it carmot access a segment associated with ring j (7 < ). Tt can access a
segment associated with ring k (k = 7). The type of access, however, is restricted
according to the access bits associated with that segment,

Domain switching in MULTICS occurs when a process crosses from one ring
to another by calling a procedure in a different ring. Obviously, this switch must
be done in a controlled manner; otherwise, a process could start executing in
ring 0, and no protection would be provided. To allow controlled domain
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ring 1

ring N~ 1

Figure 17.2 MULTICS ring structure.

switching, we modify the ring field of the segment descriptor to include the
following: -

+ Access bracket. A pair of integers, b1 and 52, such that b1 < b2.
Limit. An integer 83 such that b3 > b2.

¢ List of gates. Identifies the entry points (or gates) at which the segments
may be called.

If a process executing in ring { calls a procedure (or segment) with access bracket
(b1,62), then the call is allowed if b1 < i < b2, and the current ring number of
the process remains i. Otherwise, a trap to the operating system occurs, and
the situation is handled as follows:

# TIf i < b1, then the call is allowed to occur, because we have a transfer to a
ring (or domain) with fewer privileges. However, if parameters are passed
that refer to segments in a lower ring {that is, segments not accessible to
the called procedure), then these segments must be copied into an area
that can be accessed by the called procedure.

If { > b2, then the call is allowed to occur only if b3 is greater than or equal
to { and the call has been directed to one of the designated entry points in
the list of gates. This scheme allows processes with limited access rights to
call procedures in lower rings that have more access rights, but only in a
carefully controlled manner.

The main disadvantage of the ring (or hierarchical) structure is that it does not
allow us to enforce the need-to-know principle. In particular, if an object must
be accessible in domain D; but not accessible in domain D;, then we must have
j < i. But this requirement means that every segment accessible in D; is also
accessible in D;. '

The MULTICS protection system is generally more complex and less efficient
than are those used in current operating systems. If protection interferes with
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the ease of use of the system or significantly decreases system performance,
then its use must be weighed carefully against the purpose of the system. For
instance, we would want to have a complex protection system on a computer
used by a university to process students’ grades and also used by students for
classwork. A similar protection system would not be suited to a computer being
used for number crunching, in which performance is of utmost importance. We
would prefer to separate the mechanism from the protection policy, allowing
the same system to have complex or simple protection depending on the needs
of its users. To separate mechanism from policy, we require a more general
model of protection.

Our model of protection can be viewed abstractly as a matrix, called an access
matrix. The rows of the access matrix represent domains, and the columns
represent objects.)Each entry in the matrix consists of a set of access rights.
Because the colufnn defines objects explicitly, we can omit the object name
from the access right. The entry access(i,j) defines the set of operations that a
process executing in domain D; can invoke on object O i ,

To illustrate these concepts, we consider the access matr;{shown n Figure
17.3. There are four domains and four objects—three files (FY; Fa, F3) and one
laser printer. A process executing in domain D can read files F; and F3. A
process executing in domain Dy has the same privileges as one executing in
domain [; but in addition, it can also write onto files F i and Fs. Note that the
laser printer can be accessed only by a process executing in domain -

The access-matrjx scheme provides us with the mechanism for ecifying
a variety of policies\The mechanism consists of implementing the access
matrix and ensuring.that the semantic properties we have outlined indeed
hold. More specifically, we must ensure that a process executing in domain D,
can access only those objects specified in row i, and then only as allowed by
the access-matrix entries,

The access matrix can implement policy decisions concerning protection,
The policy decisions involve which rights should be included in the (i j)th

AR NI
S Ff! oo PHIION
D, read read
D, print
D, read execute
D read read
4 write write

Figure 17.3 Access matrix.
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entry. We must also decide the domain in which each process executes. This
last policy is usually decided by the operating system.

The users normally decide the contents of the access-matrix entries. When
a user creates a new object O}, the column O; is added to the access matrix
with the appropriate initialization entries, as dictated by the creator. The user
may decide to enter some rights in some entries in column j and other rights
in other entries, as needed.

The access matrix provides an appropriate mechanism for defining and
implementing strict control for both the static and dynamic association between
processes and domains. When we switch a process from one domain to another,
we are executing an operation {(switch) on an object (the domain). We can
control domain switching by including domains among the objects of the
access matrix. Similarly, when we change the content of the access matrix,
we are performing an operation on an object: the access matrix. Again, we
can control these changes by including the access matrix itself as an object.
Actually, since each entry in the access matrix may be modified individually,
we must consider each entry in the access matrix as an object to be protected.
Now, we need to consider only the operations possible on these new objects
(domains and the access matrix) and decide how we want processes to be able
to execute these operations.

Processes should be able to switch from one domain to another. Domain
switching from domain D; to domain D; is allowed if and only if the access
right switch € access(i, j). Thus, in Figure 174, a process executing in domain
D, can switch to domain D; or to domain Dy. A process in domain D, can
switch te Dy, and one in domain Dy can switch to domain D».

Allowing controlled change in the contents of the access-matrix entries
requires three additional operations: copy, owner, and controel. We examine
these operations next.

The ability to copy an access right from one domain (or row) of the access
matrix to another is denoted by an asterisk (*} appended to the access right.
The copy right aliows the copying of the access right only within the column
(that is, for the object) for which the right is defined. For example, in Figure
17.5(a), a process executing in domain D; can copy the read operation into any

;\ :-;3'1 : D% D;Qt
Dy read read switch |
0, print switch | switch
D, read |execute
b, \r:r?tz :’?'r?tg switch

Figure 17.4 Access matrix of Figure 17.3 with domains as objects.
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object | . o
domain: T S 7 5 \
D, execute write*
D, execute read* execute
D, execute

(a)

D, execute write*

D, execute read” execute
Dy execute read
(b)

Figure 17.5 Access matrix with copy rights.

entry assoctated with file F,. Hence, the access matrix of Figure 17.5(a} can be
modified to the access matrix shown in Figure 17.5(b).
This scheme has two variants:

Aright is copied from access(i, j) to access(k, j); itis then removed from
access(i, ). This action is a transfer of a right, rather than a copy.

Propagation of the copy right may be limited. That is, when the right
R* is copied from access(i, ) to access(k, j), only the right R (not R¥)
is created. A process executing in domain D cannot further copy the
right R.

A system may select only one of these three cepy rights, or it may provide all
three by identifying them as separate rights: copy, transfer, and lfimited copy.

We also need a mechanism to allow addition of new rights and removal of
some rights. The owner right controls these operations. If access(l, f) includes
the owner right, then a process executing in domain D; can add and remaove
any right in any entry in column j. For example, in Figure7.6(a), domain D,
is the owner of F; and thus can add and delete any vaIidKﬂrm column F.
Similarly, domain I} is the owner of F; and F3 and thus can add and remove
any valid right within these two columns. Thus, the access matrix of Figure
17.6(a) can be modified to the access matrix shown in Figure 17.6(b).

The copy and owner rights allow a process to change the entries in @ column.
A mechanism is also needed to change the entries in a row. The control right
is applicable only to domain objects. If access(i, f) includes the controf right,
then a process executing in domain I can remove any access right from
row j. For example, suppose that, in Figure 17.4, we include the control right in
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g, I F,
D owner .
1 execute write
» read”
D, g?wa:mir owner
write
‘£ ¥
Dy execute
{a)
Fy F Fs
m: aﬁ{“ o B .
D, owner write
execute
owner read”
D, reac* owner
write* write
D, write write’
{b}

‘% Figure 17.6 Access matrix with owner rights.

access(Ds, Dy). Then, a process executing in domain [ could modify domain
Dy, as shown in Figure 17.7.

The copy and owner rights provide us with a mechanism to limit the
propagation of access rights. However, they do not give us the appropriate tools
for preventing the propagation (or disclosure) of information. The problem of
guaranteeing that no information initially held in an object can migrate outside
of its execution environment is called the confinement problem. This problem
is in general unsolvable {(see Bibliographical Notes for references).

These operations on the domains and the access matrix are not in them-
selves important, but they illustrate the ability of the access-matrix model to
allow the implementation and control of dynamic protection requirements.
New objects and new domains can be created dynamically and included in the
access-matrix model. However, we have shown only that the basic mechanism
is here; system designers and users must make the policy decisions concerning
which domains are to have access to which objects in which ways.

How can the access matrix be implemented effectively? In general, the matrix
will be sparse; that is, most of the entries will be empty. Although data-
structure techniques are available for representing sparse matrices, they are
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object laset
; £ F; R By | D, D, b,

domain S| - printerf .

Dy read read switch

) o switch

D, print switch control

Dy read |execute

D, write write switch

Figure 17.7 Medified access matrix of Figure 17.4,

not particularly useful for this application, because of the way in which
the protection facility is used. Here, we first describe several methods of
implementing the access matrix and then compare the methods.

17.5.1 Global Table

The simplest implementation of the access matrix is a global table consisting
of a set of ordered triples <domain, object, rights-set>. Whenever an operation
M is executed on an object O; within domain D;, the global table is searched
for a triple <D, O, Ri>, with M € R;. If this triple is found, the operation is
allowed to continue; otherwise, an exception (or error} condition is raised.

This implementation suffers from several drawbacks. The table is usually
large and thus cannot be kept in main memory, so additional 1/0 is needed.
Virtual memory techniques are often used for managing this table. In addition,
itis difficult to take advantage of special groupings of objects or domains. For
example, if everyone can read a particular object, it must have a separate entry
in every domain.

17.5.2 Access Lists for Objects

Each column in the access matrix can be implemented as an access list for
one object, as described in Section 10.6.2. Obviously, the empty entries can be
discarded. The resulting list for each object consists of ordered pairs <domain,
rights-sef>, which define all domains with a nonempty set of access rights for
that object.

This approach can be extended easily to define a list plus a default set of
access rights. When an operation M on an object O; is attempted in domain
D;, we search the access list for object O;, looking for an entry <D, Ry > with
M e . If the entry is found, we allow the operation; i it is not, we check the
default set. If M is in the default set, we allow the access, Otherwise, access is
denied, and an exception condition occurs. For efficiency, we may check the
default set first and then search the access list.

17.5.3 Capability Lists for Domains

Rather than associating the columns of the access matrix with the objects as
access lists, we can associate each row with its domain. A capability list for
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a domain is a list of objects together with the operations allowed on those
objects. An object is often represented by its physical name or address, called
a capability. To execute operation M on object O;, the process executes the
operation M, specifying the capability (or pointer) for object O; as a parameter.
Simple possession of the capability means that access is allowed.

The capability list is associated with a domain, but it is never directly
accessible to a process executing in that domain. Rather, the capability list
is itself a protected object, maintained by the operating system and accessed
by the user only indirectly. Capability-based protection relies on the fact that
the capabilities are never allowed to migrate into any address space directly
accessible by a user process (where they could be modified). If all capabilities
are secure, the object they protect is also secure against unauthorized access.

Capabilities were originally proposed as a kind of secure pointer, to
meet the need for resource protection that was foreseen as multiprogrammed
computer systems came of age. The idea of an inherently protected pointer
provides a foundation for protection that can be extended up to the applications
level.

To provide inherent protection, we must distinguish capabilities from other
kinds of objects and they must be interpreted by an abstract machine on which
higher-level programs run. Capabiiities are usually distinguished from other
data in one of two ways:

Each object has a tag to denote its type either as a capability or as
accessible data. The tags themselves must not be directly accessible by
an application program. Hardware or firmware support may be used to
enforce this restriction. Although only 1 bit is necessary to distinguish
between capabilities and other objects, more bits are often used. This
extension allows all objects to be tagged with their types by the hardware.
Thus, the hardware can distinguish integers, floating-point numbers,
pointers, Booleans, characters, instructions, capabilities, and uninitialized
values by their tags.

Alternatively, the address space associated with a program can be split into
two parts. One part is accessible to the program and contains the program’s
normal data and instructions. The other part, containing the capability list,
is accessible only by the operating system. A segmented memory space
{(Section 8.6) is useful to support this approach.

Several capability-based protection systems have been developed; we describe
them briefly in Section 17.8. The Mach operating system also uses a version of
capability-based protection; it is described in Appendix B.

17.5.4 A Lock-Key Mechanism

The lock-key scheme is a compromise between access lists and capability
lists. Each object has a list of unique bit patterns, called locks. Similarly, each
domain has a list of unique bit patterns, called iceys. A process executing in a
domain can access an object only if that domain has a key that matches one of
the locks of the object.
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As with capability lists, the list of keys for a domain must be managed
by the operating system on behalf of the domain. Users are not allowed to
examine or modify the list of keys (or locks) directly.

17.5.5 Comparison

We now compare the various techniques for implementing an access matrix.
Using a global table is simple; however, the table can be quite large and often
cannot take advantage of special groupings of objects or domains. Access lists
correspond directly to the needs of users. When a user creates an object, he
can specify which domains can access the object, as well as the operations
allowed. However, because access-rights information for a particular domain
is not localized, determining the set of access rights for each domain is difficult.
In addition, every access to the object must be checked, requiring a search of
the access list. In a large system with long access lists, this search can be time
consuming,.

Capability lists do not correspond directly to the needs of users; they
are useful, however, for localizing information for a given process. The
process attempting access must present a capability for that access. Then, the
protection system needs only to verify that the capability is valid. Revocation
of capabilities, however, may be inefficient (Section 17.7).

The lock -key mechanism, as mentioned, is a compromise between access
lists and capability lists. The mechanism can be both effective and flexible,
depending on the length of the keys. The keys can be passed freely from
domain to domain. In addition, access privileges can be effectively revoked by
the simple technique of changing some of the locks associated with the object
(Section 17.7).

Most systems use a combination of access lists and capabilities. When a
process first tries to access an object, the access list is searched. If access is
denied, an exception condition occurs. Otherwise, a capability is created and
attached to the process. Additional references use the capability to demonstrate
swiftly that access is allowed. After the last access, the capability is destroyed.
This strategy is used in the MULTICS system and in the CAL system.

As an example of how such a strategy works, consider a file system in
which each file has an associated access list. When a process opens a file, the
directory structure is searched to find the file, access permission is checked, and
buffers are allocated. All this information is recorded in a new entry in a file
table associated with the process. The operation returns an index into this table
for the newly opened file. All operations on the file are made by specification
of the index into the file table. The entry in the file table then points to the file
and its buffers. When the file is closed, the file-table entry is deleted. Since the
file table is maintained by the operating svstem, the user cannot accidentally
corrupt it. Thus, the user can access only those files that have been opened.
Since access is checked when the file is opened, protection is ensured. This
strategy is used in"the UNIX system.

The right to access must still be checked on each access, and the file-table
entry has a capability only for the allowed operations. If a file is opened for
reading, then a capability for read access is placed in the file-table entry. If
an attempt is made to write onto the file, the sv~tem identifies this protection
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Figure 17.8 Role-based access control in Solaris 10.

violation by comparing the requested operation with the capability in the
file-table entry.

In Section 10.6.2, we described how access controls can be used on files within a
file system. Each file and directory are assigned an owner, a group, or possibly
a list of users, and for each of those entities, access-control information is
assigned. A similar function can be added to other aspects of a computer
system. A good example of this is found in Solaris 10.

Solaris 10 advances the protection available in the S5un Microsystems
operating system by explicitly adding the principle of least privilege via
role-based access control (RBAC). This facility revolves around privileges.
A privilege is the right to execute a system call or to use an option within
that system call (such as opening a file with write access). Privileges can be
assigned to processes, limiting them to exactly the access they need to perform
their work. Privileges and programs can also be assigned to roles. Users are
assigned roles or can take roles based on passwords to the roles. In this way, a
user can take a role that enables a privilege, allowing the user to run a program
to accomplish a specific task, as depicted in Figure 17.8. This implementation
of privileges decreases the security risk associated with superusers and setuid
programs,

Notice that this facility is similar to the access matrix described in Section
17.4. This relationship will be further explored in the exercises at the end of the
chapter.

.
EEE

In a dynamic protection system, we may sometimes need to revoke access
rights to objects shared by different users. Various questions about revocation
may arise:
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Immediate versus delayed. Does revocation occur immediately, or is it
delayed? If revocation is delayed, can we find out when it will take place?

Selective versus general. When an access right to an object is revoked,
does it affect all the users who have an access right to that object, or can
we specify a select group of users whose access rights should be revoked?

Partial versus total. Can a subset of the rights associated with an object be
revoked, or must we revoke all access rights for this object?

Temporary versus permanent. Can access be revoked permanently (that
is, the revoked access right will never again be available}, or can access be
revoked and later be obtained again?

With an access-list scheme, revocation is easy. The access list is searched for
any access rights to be revoked, and they are deleted from the list. Revocation
is immediate and can be general or selective, total or partial, and permanent
or temporary.

Capabilities, however, present a much more difficult revocation problem.
Since the capabilities are distributed throughout the system, we must find them
before we can revoke them. Schemes that implement revocation for capabilities
include the following:

= Reacquisition. Periodically, capabilities are deleted from each domain. if
a process wants to use a capability, it may find that that capability has been
deleted. The process may then try to reacquire the capability. If access has
been revoked, the process will not be able to reacquire the capability.

« Back-pointers. A list of pointers is maintained with each object, pointing
to all capabilities associated with that object. When revocation is required,
we can follow these pointers, changing the capabilities as necessary. This
scheme was adopted in the MULTICS system. It is quite general, but its
implementation is costly.

Indirection. The capabilities point indirectly, not directly, to the objects.
Each capability points to a unique entry in a global table, which in turn
points to the object. We implement revocation by searching the global table
for the desired entry and deleting it. Then, when an access is attempted,
the capability is found to point to an illegal table entry. Table entries can
be reused for other capabilities without difficulty, since both the capability
and the table entry contain the unique name of the object. The object for a
capability and its table entry must match. This scheme was adopted in the
CAL system. It does not allow selective revocation.

Keys. A key is a unique bit pattern that can be associated with a capability.
This key is defined when the capability is created, and it can be neither
modified nor inspected by the process owning the capability. A master
key is associated with each object; it can be defined or replaced with
the set-key operation. When a capability is created, the current value
of the master key is associated with the capability. When the capability
is exercised, its key is compared with the master key. If the keys match,
the operation is allowed to continue; otherwise, an exception condition
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is raised. Revocation replaces the master key with a new value via the
set-key operation, invalidating all previous capabilities for this object.

This scheme does not allow selective revocation, since only one master
key is associated with each object. If we associate a list of keys with each
object, then selective revocation can be implemented. Finally, we can group
all keys into one global table of keys. A capability is valid only if its
key matches some key in the global table. We implement revocation by
removing the matching key from the table. With this scheme, a key can be
associated with several objects, and several keys can be associated with
each object, providing maximum flexibility.

In key-based schemes, the operations of defining keys, inserting them
into lists, and deleting them from lists should not be available to all users.
In particular, it would be reasonable to allow only the owner of an object
to set the keys for that object. This choice, however, is a policy decision
that the protection system can implement but should not define.

{u’")‘fgi'j. ‘_:‘A R . ‘h*‘

In this section, we survey two capability-based protection systems. These
systems vary in their complexity and in the types of policies that can be
implemented on them. Neither system is widely used, but they are interesting
proving grounds for protection theories.

17.8.1 An Example: Hydra

Hydra is a capability-based protection system that provides considerable
flexibility. A fixed set of possible access rights is known to and interpreted
by the system. These rights include such basic forms of access as the right to
read, write, or exectite a memory segment. In addition, a user (of the protection
system) can declare other rights. The interpretation of user-defined righs
is performed solely by the user’s program, but the system provides access
protection for the use of these rights, as well as for the use of system-defined
rights. These facilities constitute a significant development in protection
technology.

Operations on objects are defined procedurally. The procedures that
implement such operations are themselves a form of object, and they are
accessed indirectly by capabilities. The names of user-defined procedures must
be identified to the protection system if it is to deal with objects of the user-
defined type. When the definition of an object is made known to Hyxdra, the
names of operations on the type become auxiliary rights. Auxiliary rights
can be described in a capability for an instance of the type. For a process to
perform an operation on a typed object, the capability it holds for that object
must contain the name of the operation being invoked among its auxiliary
rights. This restriction enables discrimination of access rights to be made onan
instance-by-instance and process-by-process basis.

Hydra also provides rights amplification. This scheme allows a procedure
to be certified as trustworthy to act on a formal parameter of a specified type
on behalf of any process that holds a right to execute the procedure. The rights
held by a trustworthy procedure are independent of, and may exceed, the
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rights held by the calling process. However, such a procedure must not be
regarded as universally trustworthy (the procedure is not allowed to act on
other types, for instance), and the trustworthiness must not be extended to any
other procedures or program segments that might be executed by a process.

Amplification allows implementation procedures access to the represen-
tation variables of an abstract data type. If a process holds a capability to a
typed object A, for instance, this capability may include an auxiliary right to
invoke some operation P but would not include any of the so-called kernel
rights, such as read, write, or execute, on the segment that represents A. Such
a capability gives a process a means of indirect access (through the operation
P) to the representation of A, but only for specific purposes.

When a process invokes the operation P on an object A, however, the
capability for access to A may be amplified as control passes to the code body
of P. This amplification may be necessary to allow P the right to access the
storage segment representing A so as to implement the operation that P defines
on the abstract data type. The code body of P may be allowed to read or to
write to the segment of A directly, even though the calling process cannot.
On return from P, the capability for A is restored to its original, unamplified
state. This case is a typical one in which the rights held by a process for access
to a protected segment must change dynamically, depending on the task to
be performed. The dynamic adjustment of rights is performed to guarantee
consistency of a programmer-defined abstraction. Amplification of rights can
be stated explicitly in the declaration of an abstract type to the Hydra operating
systern.

When a user passes an object as an argument to a procedure, we may need
to ensure that the procedure cannot modify the object. We can implement this
restriction readily by passing an access right that does not have the modification
(write) right. However, if amplification may occur, the right to modify may
be reinstated. Thus, the user-protection requirement can be circumvented.
In general, of course, a user may trust that a procedure performs its task
correctly. This assumption is not always correct, however, because of hardware
or software errors. Hydra solves this problem by restrictin g amplifications.

The procedure-call mechanism of Hydra was designed as a direct solution
to the problem of mutually suspicious subsystems. This problem is defined as
follows. Suppose that a program is provided that can be invoked as a service
by a number of different users (for example, a sort routine, a compiler, a
game). When users invoke this service program, they take the risk that the
program will malfunction and will either damage the given data or retain
some access right to the data to be used (without authority) later. Similarly,
the service program may have some private files (for accounting purposes,
for example) that should not be accessed directly by the calling user program.
Hydra provides mechanisms for directly dealing with this problem.

A Hydra subsystem is built on top of its protection kernel and may require
protection of its own components. A subsystemn interacts with the kernel
through calls on a set of kernel-defined primitives that define access rights to
resources defined by the subsystem. The subsystem designer can define policies
for use of these resources by user processes, but the policies are enforceable by
use of the standard access protection afforded by the capability system.
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A programmer can make direct use of the protection system after acquaint-
ing herself with its features in the appropriate reference manual. Hydra
provides a large library of system-defined procedures that can be called by
user programs. A user of the Hydra system would explicitly incorporate calls
on these system procedures into the code of her programs or would use a
program translator that had been interfaced to Hydra. :

17.8.2 An Exampie: Cambridge CAP System

A different approach to capability-based protection has been taken in the
design of the Cambridge CAP system: CAP’s capability system is simpler and
superficially less powerful than that of Hydra. However, closer examination
shows that it, too, can be used to provide secure protection of user-defined
objects. CAP has two kinds of capabilities. The ordinary kind is called a
data capability. It can be used to provide access to objects; 'but the only
rights provided are the standard read, write, and execute of the individual
storage segments associated with the object. Data capabilities are interpreted
by microcode in the CAP machine.

The second kind of capability is the so-called software capability, which
is protected, but not interpreted, by the CAP microcode. It is interpreted by
a protected (that is, a privileged} procedure, which may be written by an
application programmer as part of a subsystem. A particular kind of rights
amplification is associated with a protected procedure. When executing the
code body of such a procedure, a process temporarily acquires the right to
read or write the contents of a software capability itself. This specific kind
of rights amplification corresponds to an implementation of the seal and
unseal primitives on capabilities. Of course, this privilege is still subject to type
verification to ensure that only software capabilities for a specified abstract
type are passed to any such procedure. Universal trust is not placed in any
code other than the CAP machine’s microcode. (See Bibliographical Notes for
references.)

The interpretation of a software capability is left completely to the sub-
system, through the protected procedures it contains. This scheme allows a
variety of protection policies to be implemented. Although a programmer can
define her own protected procedures (any of which might be incorrect), the
security of the overall system cannot be compromised. The basic protection
system will not allow an unverified, user-defined, protected procedure access
to any storage segments (or capabilities) that do not belong to the protection
environment in which it resides. The most serious consequence of an insecure
protected procedure is a protection breakdown of the subsystem for which that
procedure has responsibility.

The designers of the CAP system have noted that the use of software
capabilities allowed them to realize considerable economies in formulating
and implementing protection policies commensurate with the requirements of
abstract resources. However, a subsystem designer who wants to make use of
this facility cannot simply study a reference manual, as is the case with Hydra.
Instead, she must learn the principles and techniques of protection, since the
system provides her with no library of procedures.
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To the degree that protection is provided in existing computer systems, it is
usually achieved through an operating-system kernel, which acts as a security
agent to inspect and validate each attempt to access a protected resource.
Since comprehensive access validation is potentially a source of considerable
overhead, either we must give it hardware support to reduce the cost of
each validation or we must accept that the system designer may compromise
the goals of protection. Satisfying all these goals is difficult if the flexibility
to implement protection policies is restricted by the support mechanisms
provided or if protection environments are made larger than necessary to
secure greater operational efficiency.

As operating systems have become more complex, and particularly as they
have attempted to provide higher-level user interfaces, the goals of protection
have become much more refined. The designers of protection systems-have
drawn heavily on ideas that originated in programming languages and
especially on the concepts of abstract data types and objects. Protection systems
are now concerned not only with the identity of a resource to which access is
attempted but also with the functional nature of that access. In the newest
protection systems, concern for the function to be invoked extends beyond
a set of system-defined functions, such as standard file-access methods, to
include functions that may be user-defined as well.

Policies for resource use may also vary, depending on the application,
and they may be subject to change over time. For these reasons, protection
can no longer be considered a matter of concern to only the designer of an
operating system. It should also be available as a tool for use by the application
designer, so that resources of an applications subsystem can be guarded against
tampering or the influence of an error.

17.9.1 Compiler-Based Enforcement

At this point, programming languages enter the picture. Specifying the desired
control of access to a shared resource in a system is making a declarative
statement about the resource. This kind of statement can be integrated into a
language by an extension of its typing facility. When protection is declared
along with data typing, the designer of each subsystem can specify its
requirements for protection, as well as its need for use of other resources in a
system. Such a specificafion should be given directly as a program is composed,
and in the language in which the program itself is stated. This approach has
several significant advantages:

Protection needs are simply declared, rather than programmed as a
sequence of calls on procedures of an operating system.

Protection requirements can be stated independently of the facilities
provided by a particular operating systern.

The means for enforcement need not be provided by the designer of a
subsystem.

A declarative notation is natural because access privileges are closely
related to the linguistic concept of data type.
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A variety of techniques can be provided by a programming-language
implementation to enforce protection, but any of these must depend on some
degree of support from an underlying machine and its operating system. For
example, suppose a language is used to generate code to run on the Cambridge
CAP system. On this system, every storage reference made on the underlying
hardware occurs indirectly through a capability. This restriction prevents any
process from accessing a resource outside of its protection environment at
any time. However, a program may impose arbitrary restrictions on how
a resource can be used during execution of 2 particular code segment.
We can implement such restrictions most readily by using the software
capabilities provided by CAP. A language implementation might provide
standard protected procedures to interpret software capabilities that would
realize the protection policies that could be specified in the language. This
scheme puts policy specification at the disposal of the programmers, while
freeing them from implementing its enforcement.

Even if a system does not provide a protection kernel as powerful as those
of Hydra or CAP, mechanisms are still available for implementing protection
specifications given in a programming language. The principal distinction is
that the securify of this protection will not be as great as that supported by
a protection kernel, because the mechanism must rely on more assumptions
about the operational state of the system. A compiler can separate references
for which it can certify that no protection violation could occur from those
for which a violation might be possible, and it can treat them differently. The
security provided by this form of protection rests on the assumption that the
code generated by the compiler wifl not be modified prior to or during its
execution.

What, then, are the relative merits of enforcement based solely on a kernel,
as opposed to enforcement provided largely by a compiler?

+ Security. Enforcement by a kernel provides a greater degree of security
of the protection system itself than does the generation of protection-
checking code by a compiler. In a compiler-supported scheme, security
rests on correctness of the translator, on some underlying mechanism of
storage management that protects the segments from which compiled
code is executed, and, ultimately, on the security of files from which a
program is loaded. Some of these considerations also apply to a software-
supported protection kernel, but to a lesser degree, since the kernel may
reside in fixed physical storage segments and may be loaded from only
a designated file. With a tagged-capability system, in which all address
computation is performed either by hardware or by a fixed microprogram,
even greater security is possible. Hardware-supported protection is also
relatively immune to protection violations that might occur as a result of
either hardware or system software matfunction.

Flexibility. There are limits to the flexibility of a -protection kernel in
implementing a user-defined policy, although it may supply adequate
facilities for the system to provide enforcement of its own policies.
With a programming language, protection policy can be declared and
enforcement provided as needed by an implementation. If a language
does not provide sufficient flexibility, it can be extended or replaced with
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less disturbance of a system in service than would be caused by the
modification of an operating-system kernel.

* Efficiency. The greatest efficiency is obtained when enforcement of protec-
tion is supported directly by hardware (or microcode). Insofar as software
support is required, language-based enforcement has the advantage that
static access enforcement can be verified off-line at compile time. Also,
since an intelligent compiler can tailor the enforcement mechanism to
meet the specified need, the fixed overhead of kernel calls can often be
avoided.

In summary, the specification of protection in a programming language
allows the high-level description of policies for the allocation and use of
resources. A language implementation can provide software for protection
enforcement when automatic hardware-supported checking is unavailable. In
addition, it can interpret protection specifications to generate calls on whatever
protection system is provided by the hardware and the operating system.

One way of making protection available to the application program is
through the use of a software capability that could be used as an object
of computation. Inherent in this concept is the idea that certain program
components might have the privilege of creating or examining these software
capabilities. A capability-creating program would be able to execute a primitive
operation that would seal a data structure, rendering the latter’s contents
inaccessible to any program components that did not hold either the seal or
the unseal privilege. They might copy the data structure or pass its address
to other program components, but they could not gain access to its contents.
The reason for introducing such softiare capabilities is to bring a protection
mechanism into the programming language. The only problem with the
concept as proposed is that the use of the seal and unseal operations takes a
procedural approach to specifying protection. A nonprocedural or declarative
notation seems a preferable way to make protection available to the application
programmer.

What is needed is a safe, dynamic access-control mechanism for distribut-

.ing capabilities to system resources among user processes. To contribute to the

overall reliability of a system, the access-control mechanism should be safe
to use. To be useful in practice, it should also be reasonably efficient. This
requirement has led to the development of a number of language constructs
that allow the programmer to declare various restrictions on the use of a specific
managed resource. (See the Bibliographical Notes for appropriate references.)
These constructs provide mechanisms for three functions:

Distributing capabilities safely and efficiently amon g customer processes:
In particular, mechanisms ensure that a user process will use the managed
resource only if it was granted a capability to that resource.

Specifying the type of operations that a particular process may invoke on
an allocated resource (for example, a reader of a file should be allowed
only to read the file, whereas a writer should be able both to read and
to write): It should not be necessary to grant the same set of rights to
every user process, and it should be impossible for a process to enlarge



179 e o e Prodostioo 617

its set of access rights, except with the authorization of the access-control
mechanism.

Specifying the order in which a particular process may invoke the various
operations of a resource (for example, a file must be opened before it can
be read): It should be possible to give two processes different restrictions
on the order in which they can invoke the operations of the allocated
resource,

The incorporation of protection concepts into programming languages, as
a practical tool for system design, is in its infancy. Protection will likely become
a matter of greater concern to the designers of new systems with distributed
architectures and increasingly stringent requirements on data security. Then
the importance of suitable language notations in which to express protection
requirements will be recognized more widely.

17.9.2 Protection in Java

Because Java was designed to run in a distributed environment, the Java virtual
machine— or JvM—has many built-in protecion mechanisms. Java programs
are composed of classes, each of which is a collection of data fields and
functions (called methods) that operate on those fields. The JVM loads a class
in response to a request to create instances {or objects) of that class. One of the
most novel and useful features of Java is its support for dynarmically loading
untrusted classes over a network and for executing mutually distrusting classes
within the same JVM.

Because of these capabilities of Java, protection is a paramount concern.
Classes running in the same J[VM may be from different sources and may not
be equally trusted. As a result, enforcing protection at the granularity of the
JVM process is insufficient. Intuitively, whether a request to open a file should
be allowed will generally depend on which class has requested the open. The
operating system lacks this knowledge.

Thus, such protection decisions are handled within the JVM. When the
JvM loads a class, it assigns the class to a protection domain that gives
the permissions of that class. The protection domain to which the class is
assigned depends on the URL from which the class was loaded and any digital
signatures on the class file. (Digital signatures are covered in Section 18.4.1.3.)
A configurable policy file determines the permissions granted to the domain
(and its classes). For example, classes loaded from a trusted server might be
placed in a protection domain that allows them to access files in the user’s
home directory, whereas classes loaded from an untrusted server might have
no file access permissions at all.

It can be complicated for the VM to determine what class is responsible fora
request to access a protected resource. Accesses are often performed indirectly,
through system libraries or other classes. For example, consider a class that
is not allowed to open network connections. It could call a system library to
request the load of the contents of a URL. The VM must decide whether or not
to open a network connection for this request. But which class should be used
to determine if the connection should be allowed, the application or the system
library?
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The philosophy adopted in Java is to require the library class to explicitly
permit the network connection to load the requested URL. More generally, in
ordert to access a protected resource, some method in the calling sequence that
resulted in the request must explicitly assert the privilege to access the resource.
By doing so, this method takes responsibility for the request; presumably, it will
also perform whatever checks are necessary to ensure the safety of the request,
Of course, not every method is allowed to assert a privilege; a method can
assert a privilege only if its class is in a protection domain that is itself allowed
to exercise the privilege.

This implementation approach is called stack inspection. Every thread
in the JVM has an associated stack of its ongoing method invocations. When
its caller may not be trusted, a method executes an access request within a
doPrivileged block to perform the access to a protected resource directly or
indirectly. doPrivileged () is a static method in the AccessController class
that is passed a class with a run() method to invoke. When the doPrivi leged
block is entered, the stack frame for this method is annotated to indicate this
fact. Then, the contents of the block are executed. When an access to a protected
resource is subsequently requested, either by this method or a method it
calls, 2 call to checkPermissions() is used to invoke stack inspection to
determine if the request should be allowed. The inspection examines stack
frames on the calling thread’s stack, starting from the most recently added
frame and working toward the oldest. If a stack frame is first found that has the
doPrivileged () annotation, then checkPermissions () returns immediately
and silently, allowing the access. If a stack frame is first found for which
access is disallowed based on the protection domain of the method’s class,
then checkPermissions{) throws an AccessControlException. If the stack
inspection exhausts the stack without finding either type of frame, then
whether access is allowed depends on the implementation (for example, some
implementations of the JvM may allow access, other implementations may
disallow it). .

Stack inspection is illustrated in Figure 17.9. Here, the gui () method of
a class in the untrusted applet protection domain performs two operations,
first a get() and then an open(). The former is an invocation of the

protection untrusted s . A = LR
domain: applet | URLlgader networking
socket ‘ .
permission: | Mone -lucent.com:80, connect any
class: gui: get(URL u): open{Addr a):
get{url); doPrivileged { checkPermission
open(addr); open{‘proxy.lucent.com:80°); {a, connect);
ses } , connect (a);
<request u from proxy > P

Figure 17.9 Stack inspection.
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get () method of a class in the URL loader protection domain, which is
permitted to open() sessions to sites in the lucent . com domais, in particular
a proxy server proxy.lucent.com for retrieving URLs. For this reason, the
untrusted applet’s get () invocation will succeed: the checkPermissions ()
call in the networking library encounters the stack frame of the get O
method, which performed its open() in a doPrivileged block. However,
the untrusted applet’s open(} invocation will result in an exception, because
the checkPermissions{) call finds no doPrivileged annotation before
encountering the stack frame of the gui () method.

Of course, for stack inspection to work, a program must be unable to
modify the annotations on its own stack frame or to do other manipulations
of stack inspection. This is one of the most important differences between
Java and many other languages (including C++). A Java program cannot
directly access memory. Rather, it can manipulate only an object for which
it has a reference. References cannot be forged, and the manipulations are
made only through well-defined interfaces. Compliance is enforced through a
sophisticated collection of load-time and run-time checks. As a result, an object
cannot manipulate its run-time stack, because it cannot get a reference to the
stack or other components of the protection system.

More generally, Java’s load-time and run-time checks enforce type safety of
Java classes. Type safety ensures that classes cannot treat integers as pointers,
write past the end of an array, or otherwise access memory in arbitrary ways.
Rather, a program can access an object only via the methods defined on that
object by its class. This is the foundation of Java protection, since it enables a
class to effectively encapsulate and protect its data and methods from other
classes loaded in the same JVM. For example, a variable can be defined as
private so that only the class that contains it can access it or protected so
that it can be accessed only by the class that contains it, subclasses of that class,
or classes in the same package. Type safety ensures that these restrictions can
be enforced.

17.10

Computer systems contain many objects, and they need to be protected from
misuse. Objects may be hardware (such as memory, CPU time, and 1/0 devices)
or software (such as files, programs, and semaphores). An access right is
permission to perform an operation on an object. A domain is a set of access
rights. Processes execute in domains and may use any of the access rights in
the domain to access and manipulate objects. During its lifetime, a process may
be either bound to a protection domain or allowed to switch from one domain
to another.

The access matrix is a general model of protection that provides a
mechanism for protection without imposing a particular protection policy on
the system or its users. The separation of policy and mechanism is an important
design property.

The access matrix is sparse. It is normally implemented either as access lists
associated with each object or as capability lists associated with each domain.
We can include dynamic protection in the access-matrix model by considering
domains and the access matrix itself as objects. Revocation of access rights in a
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dynamic protection model is typically easier to implement with an access-list
scheme than with a capability list.

Real systems are much more limited than the general model and tend to
provide protection only for files. UNIX is representative, providing read, write,
and execution protection separately for the owner, group, and general public
for each file. MULTICS uses a ring structure in addition to file access. Hydra, the
Cambridge CAP system, and Mach are capability systems that extend protection
to user-defined software objects. Solaris 10 implements the principle of least
privilege via role-based access control, a form of the access matrix.

Language-based protection provides finer-grained arbitration of requests
and privileges than the operating system is able to provide. For example, a
single Java JVM can run several threads, each in a different protection class. It
enforces the resource requests through sophisticated stack inspection and via
the type safety of the language.

171 Consider the ring protection scheme in MULTICS. If we were to imple- -
ment the system calls of a typical operating system and store them in a
segment associated with ring 0, what should be the values stored in the
ring field of the segment descriptor? What happens during a system
call when a process executing in a higher-numbered ring invokes a
procedure in ring 0?

17.2 The access-control matrix could be used to determine whether a process
can switch from, say, domain A to domain B and enjoy the access
privileges of domain B. Is this approach equivalent to including the
access privileges of domain B in those of domain A?

17.3  What hardware features are needed in a computer system for efficient
capability manipulation? Can these be used for memory protection?

17.4  Discuss the strengths and weaknesses of implementing an access matrix
using access lists that are associated with objects.

17.5 Explain why a capability-based system such as Hydra provides greater
flexibility than the ring protection scheme in enforcing protection
policies.

17.6 Discuss the need for rights amplification in Hydra. How does this
practice compare with the cross-ring calls in a ring protection scheme?

17.7  Discuss which of the following systems allow module designers to
enforce the need-to-know principle.

a. The MULTICS ring protection scheme
b. Hydra’s capabilities
¢. J¥M's stack-inspection scheme

17.8 Describe how the Java protection model would be sacrificed if a Java
program were allowed to directly alter the annotations of its stack
frame.
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17.9  How does the principle of least privilege aid in the creation of protection
systems?

17.10 How can systems that implement the principle of least privilege still
have protection failures that lead to security violations?

The access-matrix model of protection between domains and objects was
developed by Lampson [1969] and Lampson [1971]. Popek [1974] and Saltzer
and Schroeder [1975] provided excellent surveys on the subject of protection.
Harrison et al. [1976] used a formal version of this model to enable them to
prove properties of a protection system mathematically.

The concept of a capability evolved from Liffe’s and Jodeit’s codewords,
which were implemented in the Rice University computer (Iliffe and Jodeit
[1962]). The term capability was introduced by Dennis and Horn [1966].

The Hydra system was described by Wulf et al. [1981]. The CAP system
was described by Needham and Walker [1977]. Organick [1972] discussed the
MULTICS ring protection system.

Revocation was discussed by Redell and Fabry [1974], Cohen and Jefferson
[1975], and Fkanadham and Bernstein [1979]. The principle of separation of
policy and mechanism was advocated by the designer of Hydra (Levin et al,
[1973]). The confinement problem was first discussed by Lampson [1973] and
was further examined by Lipner [1975].

The use of higher-level languages for specifying access control was
suggested first by Morris [1973], who proposed the use of the seal and unseal
operations discussed in Section 17.9. Kieburtz and Silberschatz [1978], Kieburtz
and Silberschatz [1983], and McGraw and Andrews [1979] proposed various
language constructs for dealing with general dynamic-resource-management
schemes. Jones and Liskov [1978] considered how a static access-control scheme
can be incorporated in a programming language that supports abstract data
types. The use of minimal operating-s, stemn support to enforce protection was
advocated by the Exokernel Project (Ganger et al. [2002], Kaashoek et al. [1997]).
Extensibiiity of system code through language-based protection mechanisms
was discussed in Bershad et al. [1995]. Other technigues for enforcing protection
include sandboxing (Goldberg et al. [1996]) and software fault isolation (Wahbe
et al. {1993b]). The issues of lowering the overhead associated with protection
costs and enabling user-level access to networking devices were discussed in
McCanne and Jacobson [1993] and Basu et al. [1995].

More detailed analyses of stack inspection, including comparisons with
other approaches to Java security, can be found in Wallach et al. [1997] and
Gong et al. [1997].
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CHAPTER

Protection, as we discussed in Chapter 17, is strictly an internal problem: How
do we provide controlled access to programs and data stored in a computer
system? Security, on the other hand, requires not only an adequate protection
system but also consideration of the extersal environment within which the
system operates. A protection system is inetfective if user authenticetion is
compromised ot a program is run by an unauthorized user.

Computer resources must be guarded against unauthorized access, mali-
cious destruction or alteration, and accidental introduction of inconsistency.
These resources include information stored in the system (both data and code),
as well as the CPU, memory, disks, tapes and networking that are the com-
puter. In this chapter, we start by examining ways in which resources may be
accidentally or purposefully misused. We then explare a key security enabler
— cryptography. Finally, we look at mechanisms to guard against or detect
attacks.

In many applications, ensuring the security of the computer system is worth
considerable effort. Large commercial systems containing payroll or other
financial data are inviting targets to thieves. Systems that contain data pertain-
ing to corporate operations may be of interest to unscrupulous competitors.
Furthermore, loss of such data, whether by accident or fraud, can seriously
impair the ability of the corporation to function.

In Chapter 17, we discussed mechanisms that the operating system can
provide (with appropriate aid from the hardware} that allow users to protect
their resources, including programs and data. These mechanisms work well
only as long as the users conform to the intended use of and access to these
resources. We say that a system is secure if its resources are used and accessed
as intended under all circumstances. Unfortunately, total security cannot be
achieved. Noneiheless, we must have mechanisms to make security breaches
a rare occurrence, rather than the norm.

Security violations (or misuse)} of the system can be categorized as inten-
tional (malicious) or accidental. It is easier to protect against accidental misuse
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than against malicious misuse. For the most part, protection mechanisms are
the core ot protection from accidents. The following list includes forms of acci-
dental and malicious security violations, We should note that in our discussion
of security, we use the terms /nfruder and cracker for those attempting to breach
security. In addition, a threat is the potential for a security violation, such as the
discovery of a vulnerability, whereas an attack is the attempt to break security.

Breach of confidentiality. This type of violation involves unauthorized
reading of data (or theft of information). Typically, a breach of confiden-
tiality is the goal of an intruder. Capturing secret data from a system or
a data stream, such as credit-card information or identity information for
identity theft, can result directly in money for the intruder.

Breach of integrity. This violation involves unauthorized modification
of data. Such attacks can, for example, result in passing of liability to
an innocent party or modification of the source code of an important
commercial application.

Breach of availability. This violation involves unauthorized destruction of
data. Some crackers would rather wreak havoc and gain status or bragging
rights than gain financially. Web-site defacement is a common example of
this type of security breach.

Theft of service. This violation involves unauthorized use of resources
For example, an intruder (or intrusion program) may install a daemon on
a system that acts as a file server.

Denial of service. This vielation involves preventing legitimate use of the
svstem. Denial-of-service, or DOS, attacks are sometimes accidental. The
original Internet worm turned into a DOS attack when a bug failed to delay
its rapid spread. We discuss DOS attacks further in Section 18.3.3.

Attackers use several standard methods in their attempts to breach
security. The most common is masquerading, in which one participant in
a communication pretends to be somecne else {another host or another
person). By masquerading, attackers breach authentication, the correctness of
identification; they can then can gain access that they would not normally be
allowed or escalate their privileges—obtain privileges to which they would not
normally be entitled. Another common attack is to replay a captured exchange
of data. A replay attack consists of the malicious or fraudulent repeat of a
valid data transmission. Sometimes the replay comprises the entire attack —
for example, in a repeat of a request to transfer money. But frequently it is
done along with message modification, again to escalate privileges. Consider
the damage that could be done if a request for authentication had a legitimate
user’s information replaced with an unauthorized user’s. Yet another kind of
attack is the man-in-the-middle attack, in which an attacker sits in the data
flow of a communication, masquerading as the sender to the receiver, and
vice versa. In a network communication, a man-in-the-middle attack may be
preceded by a session hijacking, in which an active communication session is
intercepted. Several attack methods are depicted in Figure 18.1.

As we have already suggested, absolute protection of the system from
malicious abuse is not possible, but the cost to the perpetrator can be made
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Figure 18.1 Standard security attacks.

sufficiently high to deter most intruders. In some cases, such as a denial-of-
service attack, it is preferable to prevent the attack but sufficient to detect the
attack so that countermeasures can be taken.

To protect a system, we must take secu ity measures at four levels:

Physical. The site or sites containing the computer systems must be
physically secured against armed or surreptitious entrv by intruders.
Both the machine rooms and the terminals or workstations that have
access to the machines must be secured.

Human. Authorizing users must be done carefully to assure that only
appropriate users have access to the sysiem. Even avthorized users,
however, may be “encouraged” to let others use their access (in exchange
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for a bribe, for example). They may also be tricked into allowing
access via social engineering. One type of social-engineering attack
is phishing, Here, a legitimate-looking e-mail or web page misleads
a user into entering confidential information. Another technique is
dumpster diving, a general term for attempting tc gather information in
order to gain unauthorized access to the computer (by looking through
trash, finding phone books, or finding notes containing passwords, for
example). These security problems are management and personnel issues,
not problems pertaining to operating systems.

Operating system. The system must protect itself from accidental or
purpuseful security breaches. A runaway process could constitute an
accidental denial-of-service attack. A query to a service could reveal pass-
words. A stack overflow could allow the launching of an unauthorized
process. The list of possible breaches is almost endless.

i, Network. Much computer data in modern systems travels over private
leased lines, shared lines like the Internet, wireless connections, or dial-up
lines. Intercepting these data could be just as harmful as breaking into a
computer; and interruption of communications could constitute a remote
denial-of-service attack, diminishing users’ use of and trust in the system.

Security at the first two levels must be maintained if operating-system
security is to be ensured. A weakness at a high level of security (physical or
human) allows circumvention of strict low-level {operating-system) security
measures. Thus, the old adage that a chain is as weak as its weakest link is
especially true of system security. All of these aspects must be addressed for
security to be maintained.

Furthermore, the system must provide protection (Chapter 17) to allow the
implementation of security features. Without the ability to authorize users
and processes, to control their access, and to log their activities, it would
be impossible for an operating system to implement security measures or
to run securely. Hardware protection features are needed to support an overall
protection scheme. For example, a system without memory protection cannot
be secure. New hardware features are allowing systems to be made more
secure, as we shall discuss.

Unfortunately, little in security is straightforward. As intruders exploit
security vulnerabilities, security countermeasures are created and deployed.
This causes intruders to become more sophisticated in their attacks. For
example, recent security incidents include the use of spyware to provide
a conduit for spam through innocent systems {we discuss this practice in
Section 18.2). This cat-and-mouse game is likely to continue, with more security
tools needed to block the escalating intruder techniques and activities.

In the remainder of this chapter, we address security at the network and
operating-system levels. Security at the physical and human levels, although
important, is for the most part beyond the scope of this text. Security within the
operating system and between operating systems is implemented in several
ways, ranging from passwords for authentication through guarding against
viruses to Jetecting intrusions. We start with an exploration of security threats,



18.2

18.2 627

Processes, along with the kernel, are the only means of accomplishing work
on a computer. Therefore, writing a program that creates a breach of security,
or causing a normal process to change its behavior and create a breach, is a
common goal of crackers. In fact, even most nonprogram security events have
as their goal causing a program threat. For example, while it is useful to log in
to a system without authorization, it is quite a lot more useful to leave behind
a back-door daemon that provides information or allows easy access even if
the original exploit is blocked. In this section, we describe common methods
by which programs cause security breaches. Note that there is considerable
variation in the naming conventions of security holes and that we use the most
common or descriptive terms.

18.2.1 Trojan Horse

Many systems have mechanisms for allowing programs written by users to
be executed by other users. If these programs are executed in a domain that
provides the access rights of the executing user, the other users may misuse
these rights. A text-editor program, for example, may include code to search
the file to be edited for certain keywords. Tf any are found, the entire file
may be copied to a special area accessible to the creator of the text editor.
A code segment that misuses its environment is called a Trojan herse. Long
search paths, such as are commeoen en UNIX systems, exacerbate the Trojan-
horse problem. The search path lists the set of directories to search when an
ambiguous program name is given. The path is searched for a file of that
name, and the file is executed. All the directories in such a search path must
be secure, or a [rojan horse could be slipped into the user’s path and executed
accidentally. '

For instance, consider the use of the “." character in a search path. The "."
tells the shell to include the current directory in the search. Thus, if a user has
“." in her search path, has set her current directory to a friend’s directory, and
enters the name of a normal system command, the command may be executed
from the friend’s directory instead. The program would run within the uset’s
domain, allowing the program to do anything that the user is allowed to do,
including deleting the user’s files, for instance.

A variation of the Trojan horse is a program that emulates a login program.
An unsuspecting user starts to log in at a terminal and notices that he has
apparently mistyped his password. He tries again and is successful. What
has happened is that his authentication key and password have been stolen
by the login emulator, which was left running on the terminal by the thief.
The emulator stored away the password, printed out a login error message,
and exited; the user was then provided with a genuine login prompt. This
type of attack can be defeated by having the operating system print a usage
message at the end of an interactive session or by a non-trappable key sequence,
such as the control-alt-delete combination used by all modern Windows
operating svstems.

Another variation on the Trojan horse is spyware. Spyware sometimes
accompanies a program that the user has chosen to install. Most frequently, it
comes along with freeware or shareware programs, but sometimes it is included
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with commercial software. The goal of spyware is to download ads to display
on the user’s system, create pop-up browser windows when certain sites are
visited, er capture information from the user s system and return it to a central
site. This latter mode is an example of a general category of attacks known as
covert channels, in which surreptitious communication occurs. As a current
example, the installatior of an innocuous-seeming program on a Windows
system could result in the loading of a spyware daemon. The spyware could
contact a central site, be given a message and a list of recipient addresses,
and deliver the spam message to those users from the Windows machine. This
process continues until the user discovers the spyware. Frequently, the spyware
is not discovered. In 2004, it was estimated that 80 percent of spam was bemg
delivered by this method. This theft of service is not even considered a crime
In most countries!

Spyware is a micro example of a macro problem: violation of the principle
of least privilege. Lnder most circumstances, a user of an operating svstem
does not need to install network daemons. Such daemaons are installed via
two mistakes. First. a user may run with more privileges than necessary (for
example, as the administratoer), allowing programs that she runs to have more
access to the system than is necessary. This is a case of human error-—a cormunon
security weakness. Second, an operating system may allow by default more
privileges than a normal user needs. This is a case of poor operating-svstem
design decisions. An operating system (and, indeed, software in geneml)
should allow fine-grained control of access and security, but it must also be easy
to manage and understand. Inconvenient or inadequate security measures are
bound to be cirvcumvented, causing an overall weakening of the security they
were designed to implement.

18.2.2 Trap Door

The designer of a program or system mightleave a hole in the software that only
she is capable of using. This type of security breach (or trap door) was shown in
the movie War Games. For instance, the code might check for a specific user 1D or
password, and it might circumvent normal security procedures. Programmers
have been arrested for embevzling from banks by including rounding errors
in their code and having the occasional half-cent credited to their accounts.
This account crediting can add up to a large amount of money, considering the
number of transactions that a large bank executes.

A clever trap door could be included in a compiler. The compiler could
generate standard object code as well as a trap door, regardless of the source
code being compiled. This activity is particularly nefarious, since a search of
the source code of the program wiill not reveal any prohlems. Only the source
code of the compiler would contain the information.

Trap doors pose a difficult problem because, to detect them, we have to
analvze all the source cade for all components of a svstem. Given that software
svstemq may consist of millions of lines of code, this analysis is not done
frequently, and frequently it is not done at all!

18.2.3 Logic Bomb

Consider a program that inihates o security incident only under certain
circumstances. Howould be Bard 1o detect because under normal operations,
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there would be no security hole. However, when a predefined setof parameters
were met, the security hole would be created. This scenario is known as a logic
bomb. A programmer, for example, might write code to detect if she is still
employed; if that check failed, a daemon could be spawned to allow remote
access, or code could be launched to cause damage to the site.

18.2.4 Stack and Buffer Qverflow

The stack- or buffer-overflow attack is the most common way for an attacker
outside the system, on a network or dial-up connection, to gain unauthorized
access to the target system. An authorized user of the system may also use this
exploit for privilege escalation.

Essentially, the attack exploits a bug in a program. The bug can be a simple
case of poor programming, in which the programmuner neglected to code bounds
checking on an input field. In this case, the attacker sends more data than the
program was expecting. Using trial and error, or by examining the source
code of the attacked program if it is available, the attacker determines the
vulnerability and writes a program to do the following:

Overflow an input field, command-iine argument, or input buffer —for
example, on a network daemor—until it writes into the stack.

Overwrite the current return address on the stack with the address of the
expleit code loaded in step 3.

Write a simple set of code for the next space in the stack that includes
the commands that the attacker wishes to execute —for instance, spawn
a shetl.

The result of this attack program’s execution will be a root shell or other
privileged command execution,

For instance, if a web-page form expects a user name to be entered into a
field, the attacker could send the user name, plus extra characters to overflow
the buffer and reach the stack, plus a new return address to load onto the stack,
plus the code the attacker wants to run. When the buffer-reading subroutine
returns from execution, the return address is the expleit code, and the code is
run.

Let’s look at a buffer-overflow exploit in more detail. Consider the simple
C program shown in Figure 18.2. This program creates a character array ot
size BUFFER_2TZE and copies the contents of the parameter provided on the
command line—argv[1]. As long as the size of this paramcter is less than
BUFFER STZE (we need one byte to store the nuli terminator), this program
works properly. But consider what happens if the paramecter provided on the
command line is longer than BUFFER_SIZE. In this scenario, the strepy ()
function will begin copying from argv [1] until it encounters a null terminator
(\0) or until the program crashes. Thus, this program suffers from a potential
buffer-overflow problem in which copied data overflow the buffer array.

Note that a careful programmer could have performed bounds checking
on the size ot argv{1] by using the strncpy () function rather than strepy (),
replacing the line “strepy (butfer, argv{1]);” with “strncpy(huffer,
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#include <stdio.h=
#define BUFFER_.SIZE 256

int main(int argc, char *argvl[])

{

char buffer [BUFFER._SIZE];

if (argc < 2)
return -1;

else {
strepy (buffer,argv(l]);
return 0;

}

}

Figure 18.2 C program with buffer-overflow condition.

argv(1], sizeof (buffer)-1);". Unfortunately, good bounds checking is
the exception rather than the norm.

Furthermore, lack of bounds checking is not the only possible cause of the
behavior of the program in Figure 18.2. The program could instead have been
carefully designed to compremise the integrity of the system. We now consider
the possible security vulnerabilities of a buffer overflow.

When a function is invoked in a typical computer architecture, the variables
defined locally to the function (sometimes known as automatic variables), the
parameters passed to the function, and the address to which conirol returns
once the function exits are stored in a stack frame. The layout for a typical stack
frame is shown in Figure 18.3. Examining the stack frame from top to bottom,
we first see the parameters passed to the function, followed by any automatic
variables declared in the function. We next see the frame pointer, which is
the address of the beginning of the stack frame. Finally, we have the return
address, which specifies where to return control once the function exits. The
frame pointer must be saved on the stack, as the value of the stack pointer can

bottom -« [rame pointer
grows —
top e

Figure 18.3 The layout for a typical stack frams.
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vary during the function call; the saved frame pointer allows relative access to
parameters and automatic variables.

Given this standard memory layout, a cracker could execute a buffer-
overflow attack. Her goal is to replace the return address in the stack frame so
that it now points to the code segment containing the attacking program.

The programmer first writes a short code segment such as the following:

#include <stdio.h>

int main(int argc, char *argv([]}

{
execvp (' *\bin\sh’ ', **\bin \sh’*, NULL};
return 9;

}

Using the execvp() system call, this code segment creates a shell process.
If the program being attacked runs with system-wide permissions, this newly
created shell will gain complete access to the system. Of course, the code
segment could do anything allowed by the privileges of the attacked process.
This code segment is then compiled so that the assembly language instructions
can be modified. The primary modification is to remove unnecessary features
in the code, thereby reducing the code size so that it can fit into a stack frame.
This assembled code fragment is now a binary sequence that will be at the
heart of the attack.

Refer again to the program shown in Figure 18.2. Let’s assume that when
the main{) function is called in that program, the stack frame appears as
shown in Figure 18.4(a). Using a debugger, the programmer then finds the
address of buf fer [0] in the stack. That address is the location of the code the
attacker wants executed, so the binary sequence is appended with the necessary

- B [ .
- teturn.address b address of modified. -

‘'sdved frame pointer -

) L : s NO “OP
buter(BUFFER_SIZE - 1) :

} copied <
—
buffer(1) - - modified shell.code .
bufier{0)
Y, -

(@) (b)

Figure 18.4 Hypothetical stack frame for Figure 18.2, (a} before and (b} -
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amount of NO-OP instructions (for NO-OPeration) to fill the stack frame up
to the tocation of the return address; and the location of buf fer [0], the new
return address, is added. The attack is complete when the attacker gives this
constructed binary sequence as input to the process. The process then copies
the binary sequence from argv (1] to position buffer {0] in the stack frame.
Now, when control returns from main (), instead of returning to the location
specified by the old value of the return address, we return to the modified shell
code, which runs with the access rights of the attacked process! Figure 18.4(b)
contains the modified shell code.

There are many ways to exploit potential buffer-overflow problems. In
this example, we considered the possibility that the program being attacked —
the code shown in Figure 18.2-—ran with system-wide permissions. However,
the code segment that runs once the value of the retum address has been
modified might perform any type of malicious act, such as deleting files,
opening network ports for further exploitation, and so on.

This example buffer-overflow attack reveals that considerable knowledge
and programming skill are needed to recognize exploitable code and then
to exploit it. Unfortunately, it does not take great programmers to launch
security attacks. Rather, one cracker can determine the bug and then write an
exploit. Anyone with rudimentary computer skills and access to the exploit—
a so-called script kiddie —can then try to launch the attack at target systems.

The buffer-overflow attack is especially pernicious because it can be run
between systems and can travel over allowed communication channels. Such
attacks can occur within protocols that are expected to be used to communicate
with the target machine, and they can therefore be hard to detect and prevent.
They can even bypass the security added by firewalls (Section 18.7).

One solution to this problem is for the CPU to have a feature that disallows
execution of code in a stack section of memory. Recent versions of Sun’s SPARC
chip include this setting, and recent versions of Selaris enahle it. The return
address of the overflowed routine can still be modified; but when the return
address is within the stack and the code there attempts to execuie, an exception
is generated, and the program is halted with an error.

Recent versions of AMD and Intel x86 chips include the NX feature to prevent
this type of attack. The use of the feature is supported in several x84 operating
systems, including Linux and ‘¥indows XP 5P2. The hardware implementation
involves the use of a new bit in the page tables of the CPUs. This bit marks
the associated page as nonexccutable, disallowing instructions to be read from
it and executed. As this feature becomes prevalent, buffer-overflow attacks
should greatly diminist:,

18.2.5 Viruses

Another form of program threat is a virus. Viruses are self-replicating and
to “infect” other programs. They can wreak havoc in a system
» or destroying files and causing system crashes and program
A virusis a fragiment of code embedded in a legitimate program.
penetration attacks, viruses are very specific to architectures,
tems, and applications. Viruses are a particular problem for
JNIX and other multiuser operating systems generally are not

viruses because the executable programs are protected from

after.
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writing by the operating system. Even if a virus does infect such a program, its
powers usually are limited because other aspects of the systern are protected.

Viruses are usually borme via email, with spam the most common vector.
They can also spread when users download viral programs from Internet
file-sharing services or exchange infected disks.

Another common form of virus transmission uses Microsoft Office files,
such as Microsoft Word documents. These documents can contain macros (or
Visual Basic programs) that programs in the Office suite {Word, PowerFoint,
and FExcel) will execute automatically. Because these programs run under the
user’s own account, the macros can run largely unconstrained {for example,
deleting user files at will). Commonly, the virus will also e-mail itself to others
in the user’s contact list. Here is a code sample that shows the simplicity of
writing a Visual Basic macro that a virus could use to format the hard drive of
a Windows computer as soon as the file containing the macro was opened:

Sub AutoOpen!)

Dim oFS&
Set oF8 = CreateCbject(’’'Scripting.FileSystemCbject’’)
vs = Shell(‘’c:

command.com /k format c:’‘,vbHide)

End Sub

How do viruses work? Once a virus reaches a target machine, a program
known as a virus dropper inserts the virus onto the system. The virus dropper
is usually a Trojan horse, executed for other reasons but installing the virus
as its core activity. Once instatled, the virus may do any one of a number of
things. There are literally thousands of viruses, but they fall into several main
categories. Note that many viruses belong to more than one category.

File. A standard file virus infects a system by appending itself to a file.
It changes the start of the program so that execution jumps to its code.
After it executes, it returns control to the program so that its execution is
not noticed. File viruses are sometimes known as parasitic viruses, as they
leave no full files behind and leave the host program still functional.

Boot. A boot virus infects the boot sector of the system, executing every
time the system is booted and before the operating system is loaded. It
watches for other bootable media (that is, floppy disks) and infects them.
These viruses are also known as memory viruses, because they do not
appear in the file system. Figure 18.5 shows how a boot virus works.

Macro. Most viruses are written in a low-level language, such as assembly
or C. Macro viruses are written in a high-level language, such as Visual
Basic. These viruses are triggered when a program capable of executing
the macro is run. For example, a macro virus could be contained in a
spreadshect file.

Source code. A source code virus looks for source code and modifies it to
include the virus and to help spread the virus.

Polymorphic. This virus changes each time it is installed to avoid detection
by antivirus software. The changes do not affect the virus’s functionality
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Figure 18.5 A boot-sector computer virus.

but rather change the virus's signature. A virus signature is a pattern that
can be used to identify a virus, typically a series of bytes that make up the

virus code.

 Encrypted. An encrypted virus includes decryption code along with the
encrypted virus, again to avoid detection. The virus first decrypts and then

executes.

Stealth. This tricky virus attempts to avoid detection by modifying parts
of the system that could be used to detect it. For example, it could modify
the read system call so that if the file it has modified is read, the original

form of the code is returned rather than the infected code.

Tunneling. This virus attempts to bypass detection by an antivirus scanner
by installing itself in the interrupt-handler chain. Similar viruses install

themselves in device drivers.
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Multipartite. A virus of this type is able to infect multiple parts of a system,
including boot sectors, memory, and files. This makes it difficult to detect
and contain.

Armored. An armored virus is coded to make itself hard for antivirus
researchers to unravel and understand. It can also be compressed to avoid
detection and disinfection. In addition, virus droppers and other full files
that are part of a virus infestation are frequently hidden via file attributes
or unviewable file names.

This vast variety of viruses is likely to continue to grow. In fact, in 2004
a new and widespread virus was detected. It exploited three separate bugs
for its operation. This virus started by infecting hundreds of Windows servers
(including many trusted sites) running Microsoft Internet Information Server
(i1S). Any vulnerable Microsoft Explorer web browser visiting those sites
received a browser virus with any download. The browser virus installed
several back-door programs, including a keystroke logger, which records
all things entered on the keyboard (including passwords and credit-card
numbers). It also installed & daemon to allow unlimited remote “access by
an intruder and another that allowed an intruder to route spam through the
infected desktop computer.

Generally, viruses are the most disruptive security attack; and because they
are effective, they will continue to be written and to spread. Among the active
debates within the computing community is whether a monoculture, in which
many systems run the same hardware, operating system, and/or application
software, is increasing the threat of and damage caused by security intrusions.
Within the debate is the issue of whether or not there even exists a monoculture
today (consisting of Microsoft products).
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Program threats typically use a breakdown in the protection mechanisms of a
system to attack programs. In contrast, system and network threats involve the
abuse of services and network connections. Sometimes a system and network
attack is used to launch a program attack, and vice versa.

System and network threats create a situation in which operating-system
resources and user files are misused. Here, we discuss some examples of these
threats, including worms, port scanning, and denial-of-service attacks.

It is important to note that masquerading and replay attacks are also
common over networks between systems. In fact, these attacks are more
effective and harder to counter when multiple systems are involved. For
example, within a computer, the operating system usually can determine the
sender and receiver of a message. Even if the sender changes to the 1D of
someone else, there might be a record of that ID change. When multiple systems
are involved, especially systems controlled by attackers, then such tracing is
much harder.

The generalization is that sharing secrets (to prove identity and as keys to
encryption) is required for authentication and encryption, and that is easier
in environments (such as a single operating system) in which secure sharing
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methods exist. These methods include shared memory and interprocess com-
munications. Creating secure communication and authentication is discussed
in Sections 18.4 and 18.5.

18.3.1 Worms

A worm is a process that uses the spawn mechanism to ravage system
performance. The worm spawns copies of itself, using up system resources
and perhaps locking out all other processes. On computer networks, worms
are particularly potent, since they may reproduce themselves among systems
and thus shut down an entire network. Such an event occurred in 1988 to UNIX
systems on the Internet, causing millions of dollars of lost system and system
administrator time.

At the close of the workday on November 2, 1988, Robert Tappan Morris,
Ir., & first-year Corneli graduate student, unleashed a worm program on one
OF more hosts connected to the Internet. Targeting Sun Microsysterns” Sun 3
workstations and VAX computers running variants of Version 4 BSD UNIX, the
worm quickly spread over great distances; within a few hours of its release,
it had consumed system resources to the point of bringing down the infected
machines.

Although Robert Morris designed the self-replicating program for rapid
reproduction and distribution, some of the features of the UNIX networking
environment provided the means to propagate the worm throughout the sys-
tem. It is fikely that Morris chose for initial infection an Internet host left open
for and accessible to outside users. From there, the worm program exploited
flaws in the UNIX operating system’s security routines and took advantage
of UNIX utilities that simplify resource sharing in local-area networks to gain
unauthorized access to thousands of other connected sites. Morris’s methods
of attack are outlined next.

The worm was made up of two programs, a grappling hook (also called a
bootstrap or vector) program and the main program. Named /1.c, the grappling
hook consisted of 99 lines of C code compiled and run on each machine it
accessed. Once established on the computer system under attack, the grapplin g
hook connected to the machine where it originated and uploaded a copy of the
main worm onto the frooked system (Figure 18.6). The main program proceeded
to search for other machines to which the newly infected system could connect
easily. In these actions, Mortis exploited the UNIX networking utility rsh for
easy remote task execution. By setting up special files that list host-login
name pairs, users can omit entering a password each time they access a remote
account on the paired list. The worm searched these special files for site names
that would allow remote execution without a password. Where remote shells
were established, the worin program was uploaded and began executing anew.

The attack via remote access was one of three infection methods built into
the worm. The other two methods involved operating-system bugs in the UNIX
finger and sendmail programs.

The finger utility functions as an electronic telephone directory; the
command

finger user-name@hostname
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Figure 18.6 The Morris Internet worm.

returns a person’s real and login names along with other information that
the user may have provided, such as office and home address and telephone
number, research plan, or clever quotation. Finger runs as a background
process {or daemon) at each BSD site and responds to queries throughout the
Internet. The worm executed a buffer-overflow attack on f inger. The program
queried finger with a 536-byte string crafted to exceed the buffer allocated
for input and to overwrite the stack frame. Instead of returning to the main
routine it was in before Morris’s call, the finger daemon was routed to a
procedure within the invading 536-byte string now residing on the stack. The
new procedure executed /bin/sh, which, if successful, gave the worm a remote
shell on the machine under attack.

The bug exploited in sendmail also invelved using a daemon process
for malicious entry. sendmail sends, receives, and routes electronic mail.
Debugging code in the utility permits testers to verify and display the state of
the mail system. The debugging option was useful to system administrators
and was often left on. Morris included in his attack arsenal a call to debug that
—instead of specifying a user address, as would be normai ii1 testing -—issued
a set of commands that mailed and executed a copy of the grappling-hook
program.

Once in place, the main worm undertook systematic attempts to discover
user passwords. [t began by trying simple cases of no password or of passwords
constructed of account-user-name combinations, then used comparisons with
an internal dictionary of 432 favorite password choices, and then went to the
final stage of trying each word in the standard UNIX on-line dictionary as a
possible password. This elaborate an/i efficient three-stage password-cracking
algorithm enabled the worm to gain access to other user accounts on the
infected system. The worm then searched for rsh data files in these newly
broken accounts and used them as described previously to gain access to user
accounts on remote systems.

With each new access, the worm program searched for already active
copies of itself. If it found one, the new copy exited, except in every seventh
instance. Had the worm exited on all duplicate sightings, it might have
remained undetected. Allowing every seventh duplicate to proceed (possibly
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to confound efforts to stop its spread by baiting with Jake worms) created a
wholesale infestation of Sun and VAX systems on the Internet.

The very features of the UNIX network environment that assisted the
worm'’s propagation also helped to stop its advance. Ease of electronic commu-
nication, mechanisms to copy source and binary files to remote machines, and
access to both source code and human expertise allowed cooperative efforts to
develop solutions quickly. By the evening of the next day, November 3, methods
of halting the invading program were circulated to system administrators via
the Internet. Within days, specific software patches for the exploited security
flaws were available.

Why did Morris unleash the worm? The action has been characterized as
both a harmless prank gone awry and a serious criminal offense. Based on
the complexity of starting the attack, it is unlikely that the worm’s release or
the scope of its spread was unintentional. The warm program took elaborate
steps to cover its tracks and to repel efforts to stop its spread. Yet the program
contained no code aimed at damaging or destroying the systems on which it
ran. The author clearly had the expertise to include such commands; in fact,
data structures were present in the bootstrap code that could have been used to
transter Trojan-horse or virus programs. The behavior of the program miay lead
to interesting observations, but it does not provide 4 sound basis for inferrin g
motive. What is not open to speculation, however, is the légal outcome: A
federal court convicted Morris and handed down a senterce of three years’
probation, 400 hours of community service, and a $10,000 firie. Morris's legal
costs probably exceeded $100,000. o -

Security experts continue to evaluate methods to decrease or eliminate
worms. A more recent event, though, shows that worms are still a fact of
life on the Internet. It also shows that as the Internet grows, the damage
that even “harmless” worms can do also grows and can be significant. This
example occurred during August 2003. The fifth version of the “Sobig” worm,
more properly known as “W32.Sobig. F@mm,” was released by persons at this
time unknown. [t was the fastest-spreading worm released to date, at its peak
intecting hundreds of thousands of computers and one in seventeen e-mail
messages on the Internet. It clogged e-mail inboxes, slowed networks, and
took a huge number of hours to clean up. '

Sobig.F was launched by being uploaded to a pornography newsgroup via
an account created with a stolen credit card. It was disguised as a photo. The
virus targeted Microsoft Windows systems and used its own SMTP engine to
e-mail itself to all the addresses found on an infected system. Tt used a varicty
of subject lines to help avoid detection, including “Thank You “Your details.”
and “Re: Approved.” It also used a random address on the host as the “From:”
address, making it difficult to determine from the message which machine was
the infected source. Sobig F included an attachment for the target e-mail reader
toclick on, again with a va riety of names. If this payload was executed, it stored
a program called WINPPRIZEXE in the default Windows directory, along with
a text file. It also modified the Windows registry.

The code inctuded in the attachment was also programmed to periodically
attempt to connect to:one of twenty servers and dowriload and execute a
program from them. Fortunately, the servers were disabled before the code
could be downloaded. The content of the program from these servers has not
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yet been determined. If the code was malevolent, untold damage to a vast
number of machines could have resulted.

18.3.2 Port Scanning

Port scanning is not an attack but rather is a means for a cracker to detect
a system’s vulnerabilities to sttack. Port scanning typically is automated,
involving a tool that attemipts to create a TCP/1P connection to a specific port
or a range of ports. For example, suppose there is a known vulnerability (or
bug) in sendmail. A cracker could launch a port scanner to try to connect
to, say, port 25 of a particular system or a range of systems. If the connection
was sticcessful, the cracker {or tool) could attempt to communicate with the
answering service to determine if it was indeed sendmail and, if so, if it was
the version with the bug.

Now imagine a tool in which each bug of every service of every operating
system was encoded. The tool could attempt to connect to every port of one
or more systems. For every service that answered, it could try to use each
known bug. Frequently, the bugs are buffer overflows, allowing the creation of
a privileged command shell on the system. From there, of course, the cracker
could install Trojan horses, back-door programs, and so on.

There is no such tool, but there are tools that perform subsets of that
functionality. For example, nmap (from http://www.insecure.org/nmap/} is
a very versatile open-source utility for network exploration and security
auditing. When pointed at a target, it will determine what services are running,
including application names and versions. It can determine the host operating
system. It can also provide information about defenses, such as what firewalls
are defending the target. It does not exploit any known bugs.

Nessus (from http:// www.nessus.org/) performs a similar function, but
it has a database of bugs and their exploits. It can scan a range of systems,
determine the services running on those systems, and attempt to attack al
appropriate bugs. It generates reports about the results. It does not perform
the final step of exploiting the found bugs, but a knowledgeable cracker or a
script kiddie could.

Because port scans are detectable (see 18.6.3), they frequently are launched
from zombie systems. Such systems are previously compromised, indepen-
dent systemns that are serving their owners while being used for nefarious
purposes, including denial-of-service attacks and spam relay. Zombies make
crackers particularly difficult to prosecute because determining the source of
the attack and the person that launched it is challenging. This is one of many
reasons that “inconsequential” systems should also be secured, not just systems
containing “valuable” information or services.

18.3.3 Denial of Service

As mentioned earlier, DOS attacks are aimed not at gaining information or
stealing resources but rather at disrupting legitimate use of a system or
facility. Most dental-of-service attacks involve systemns that the attacker has
not penetrated. Indeed, launching an attack that prevents legitimate use is
frequently easier than breaking into a machine or facility.

Deniat-of-service attacks are generally network based. They fall into two
categories. The first case is an attack that uses so many facility resources
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that, in essence, no useful work can be done. For example, a web-site click
could download a Java applet that proceeds to use all available CPU time
or to infinitely pop up windows. The second case involves disrupting the
network of the facility. There have been several successful denial-of-service
attacks of this kind against major web sites. They result from abuse of some
of the fundamental functionality of TCP/IP. For instance, if the attacker sends
the part of the protocol that says “I want to start a TCP connection,” but never
follows with the standard “The connection is now complete,” the result can
be partially started TCP sessions. Enough of these sessions can eat up all
the network resources of the system, disabling any further legitimate TCP
connections. Such attacks, which can last hours or days, have caused partial
or full failure of attempts to use the target facility. These attacks are usually
stopped at the network level until the operating systems can be updated to
reduce their vulnerability.

Generally, it is impossible to prevent denial-of-service attacks. The attacks
use the same mechanisms as normal operation. Even more difficult to prevent
and resolve are distributed denial-of-service attacks (DDOS). These attacks
are launched from multiple sites at once, toward a common target, typically
by zombies.

Sometimes a site does not even know it is under attack. 1t can be difficult
to determine whether a system slowdown is just a surge in system use or an
attack. Consider that a successful advertising campaign that greatly increases
traffic to a site could be considered a DDOS.

There are other interesting aspects of DOS attacks. For example, pro-
grammers and systems managers need to fully understand the algorithms
and technologies they are deploying. If an authentication algorithm locks an
account for a period of time after several incorrect attempts, then an attacker
could cause all authentication to be blocked by purposefully causing incorrect
attempts to all accounts. Similarly, a firewall that automatically blocks certain
kinds of traffic could be induced to block that traffic when it should not.
Finally, computer science classes are notorious sources of accidental system
DOS attacks. Consider the first programming exercises in which students learn
to create subprocesses or threads. A common bug involves spawning subpro-
cesses infinitely. The system’s free memory and CPU resources don't stand a
chance.

- s oy
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There are many defenses against computer attacks, running the gamut from
methodology to technology. The breadest tool available to system designers
and users is cryptography. In this section we discuss the details of crypography
and its use in computer security.

In an isolated computer, the operating system can reliably determine the
sender and recipient of all interprocess communication, since it controls al
communication channels in the computer. In a network of computers, the
situation is quite different. A networked computer receives bits from th
wire with no immediate and reliable way of determining what machine ot
application sent those bits. Similarly, the computer sends bits onto the network
with no way of knowing who might eventually receive them.
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Commonly, network addresses are used to infer the potential senders
and receivers of network messages. Network packets arrive with a source
address, such as an TP address. And when a computer sends a message, it
names the intended receiver by specifying a destination address. However, for
applications where security matters, we are asking for trouble if we assume
that the source or destination address of a packet reliably determines who sent
or received that packet. A rogue computer can send a message with a falsified
source address, and numerous computers other than the one specified by the
destination address can (and typically do) receive a packet. For example, all of
the routers on the way to the destination will receive the packet, too. How, then,
is an operating system to decide whether to grant a request when it cannot trust
the named source of the request? And how is it supposed ta provide protection
for a request or data when it cannot determine who will receive the response
or message contents it sends over the network?

It is generally considered infeasible to build a network of any scale in
which the source and destination addresses of packets can be frusted in this
sense. Therefore, the only alternative is somehow to eliminate the need to
trust the network. This is the job of cryptography. Abstractly, cryptography is
used to constrain the potential senders and/or receivers of a message. Modern
cryptography is based on secrets called keys that are selectively distributed to
computers in a network and used to process messages. Cryptography enables a
recipient of a message to verify that the message was created by some computer
possessing a certain key—the key is the source of the message. Similarly, a
sender can encode its message so that only a computer with a certain key can
decode the message, so that the key becomes the destination. Unlike network
addresses, however, keys are designed so that it is not computationally feasible
to derive them from the messages they were used to generate or from any
other public information. Thus, they provide a much more trustworthy means
of constraining senders and receivers of messages. Note that cryptography is
a field of study unto itself, with large and small complexities and subtleties.
Here, we explore the most important aspects of the parts of cryptography that
pertain to operating systems.

18.4.1 Encryption

Because it solves a wide variety of communication security problems, encryp-
tion is used frequently in many aspects of modern computing. Encryption is
a means for constraining the possible receivers of a message. An encryption
algorithm enables the sender of a message to ensure that only a computer
possessing a certain key can read the message. Encryption of messages is an
ancient practice, of course, and there have been many encryption algorithms,
dating back to before Caesar. In this section, we describe important modern
encryption principles and algorithms.

Figure 18.7 shows an example of two users communicating securely over
an insecure channel. We refer to this figure throughout the section. Note that the
key exchange can take place directly between the two parties or via a trusted
third party (that is, a certificate authority), as discussed in Section 18.4.1.4.

An encryption algorithm consists of the following components:

A set K of keys.-
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A set M of messages.
“A set C of ciphertexts.

Afunction E : K — (M — ). Thatis, for eachk e K, E{k}is a function fc
generating ciphertexts from messages. Both E and E (k) for any k shoul
be efficiently computable functions.

Afunction D: K — (C —» M). Thatis, foreach k ¢ K, IXk) is a function fc
generating messages from ciphertexts. Both D and D{k) for any k shoul.
be efficiently computable functions.

_An encryption algorithm must provide this essential property: Given
ciphertext ¢ € C, a computer can compute m such that E{k)(m) = ¢ only
it possesses D(k). Thus, a computer holding D(k} can decrypt ciphertexts t
the plaintexts used to produce them, but a computer not holding D{k) canne¢
decrypt ciphertexts. Since ciphertexts are generally exposed (for example, ser
on the network), it is important that it be infeasible to derive D(k) from th
ciphertexts.
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There are two main types of encryption algorithms: symmetric and
asymmetric. We discuss both types in the following sections.

18.4.1.1 Symmetric Encryption -

In‘a symmetric encryption algorithm, the same key is used to encrypt and to
decrypt. That is, E{k} can'be derived from D(k) and vice versa. Therefore, the
secrecy of E (k) must be protected to the same extent as that of D(k).

For the past 20 years or so, the most commonly used symmetric encryption
algorithm in the United States for civilian applications has been the data-
encryption standard (DES) adopted by the National Institute of Standards
and Technology (NIST). DES works by taking a 64-bit value and a 56-bit
key. and performing a series of transformations. These transformations are
based on substitution and permutation opertations, as is generally the case
for symmetric encryption transformations. Some of the transformations are
black-box transformations, in that their algorithms are hidden. In fact, these
so-called “S-boxes” are classified by the United States government. Messages
longer than 64 bits are broken into 64-bit chunks, and a shorter block is padded
to fill out the block. Because DES works en a chunk of bits at a time, is a
known as a bleck cipher. If the same key is used for encrypting an extended
amount of data, it becomes vutlnerable to attack. Consider, for example, that
the same source block wouid result in the same ciphertext if the same key and
encryption algorithm were used. Therefore, the chunks are not just encrypted
but also XORed with the previous ciphertext block before encryption. This is
known as cipher-block chaining,.

DES is now considered insecure for many applications because its keys can
be exhaustively searched with moderate compuiing resources. Rather than
giving up on DES, though, NIST created a modification called triple DES, in
which the DES algorithm is repeated three times (two encryptions and one
decryption) on the same plaintext using two or three keys—for example,
¢ = E{ks}(D(k2){ E{K1Xm))). When three keys are used, the effective key length
is 168 bits. Triple DES is in widespread use today.

In 2001, NIST adepted a new encryption algorithm,: called the advanced
encryption standard (AES), to replace DES. AES is another symmetric block
cipher. It can use key lengths of 128, 192, and 256 bits and works on 128-bit
blocks. It works by performing 10 to 14 rounds of transformations on a matrix
formed from a block. Generally, the algorithm is compact and efficient.

There are severai other symmetric block encryption algorithms in use today
that bear mentioning. The twofish aigorithm is fast, compact, and easy to
implement. It can use a variable key length of up to 256 bits and works on
128-bit blocks. RCS can vary in key length, number of transformations, and
block size. Because it uses only basic computational operations, it can run on a
wide variety of CPUs:

RC4 is perhaps the most common stream cipher. A stream cipher is
designed to encrypt and decrypt a stream of bytes or bits rather than a block.
This is useful when the length of a communication would make a block cipher
too slow. The key is input into a pseudo-random-bit generator, which is an
algorithm that atbempts to produce random bits. The output of the generator
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when fed a key is a keystream. A keystream is an infinite set of keys that can be
used for the input plaintext stream. RC4 is used in encrypting steams of data,
such as in WEP, the wireless LAN protocol. 1t is also used in communications
between web browsers and web servers, as we discuss below. Unfortunately,
RC4 as used in WEP (IEEE standard 802.11) has been found to be breakable in a
reasonable amount of computer time. In fact, RC4 itself has vulnerabilities.

18.4.1.2 Asymmetric Encryption

In an asymmetric encryption algorithm, there are different encryption and
decryption keys. Here, we describe one such algorithm, known as R5A after
the names of its inventors (Rivest, Shamir and Adleman.) The RSA cipher is a
block-cipher public-key algorithm and is the most widely used asymmetrical
algorithm. Asymmetrical algorithms based on elliptical curves are gaining
ground, however, because the key length of such an algorithm can be shorter
for the same amount of cryptographic strength.

It is computationally infeasible to derive Dk, N) from E(k,, N), and so
E(k.. N) need not be kept secret and can be widely disseminated; thus, E(k,, N}
(orjustk,) is the public key and D(ks. N) (or just k;) is the private key. N is the
product of two large, randomly chosen prime numbers p and g (for example, p
and g4 are 512 bits each). The encryption algorithm is E (k., N)(m} = m* mod N,
where k, satisfies k.ks mod (p — 1){g — 1) = 1. The decryption algorithm is then
Diks. N)(c) = ¢* mod N.

An example using small values is shown in Figure 18.8. In this example, we
make p = 7and g = 13. We then calculate N = 7«13 = 91 and {(p—1)g—1) =72
We next select k, relatively prime to 72 and < 72, yielding 5. Finally, we calculate
ks such that k.ky mod 72 = 1, yielding 29. We how have our keys: the public
key, k.. N = 5,91, and the private key, k; N =29,91. Encrypting the message
69 with the public key results in the message 62, which is then decoded by the
receiver via the private key.

The use of asymmetric encryption begins with the publication of the public
key of the destination. For bidirectional communication, the scurce also must
publish its public key. “Publication” can be as simple as handing over an
electronic copy of the key, or it can be more complex. The private key (or “secret
key”) must be jealously guarded, as anyone holding that key can decrypt any
message created by the matching public key.

We should note that the seemingly small difference in key use between
asymmetric and symmetric cryptography is quite large in practice. Asymmetric
cryptography is based on mathematical functions rather than transformations,
making it much more computationally expensive to execute. It is much
faster for a computer to encode and decode ciphertext by using the usual
symmetric algorithms than by using asymmetric algorithms. Why, then, use
an asymmetric algorithm? In truth, these algorithms are not used for general-
purpose encryption of large amounts of data. However, they are used not
only for encryption of small amounts of data but also for authentication,
confidentiality, and key distribution, as we show in the following sections.

18.4.1.3 Authentication

We have seen that encryption offers a way of constraining the set of possible
receivers of a message. Constraining the set of potential senders of a message is
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called authentication. Authentication is thus complementary to encryption. In
fact, sometimes their functions overlap. Consider that-an encrypted message
can also prove the identity of the sender. For example, if D(ks. NXE(k,, N)(m))
produces a valid message, then we know that the creator of the message must
hold k,. Authentication is also useful for proving that a message has not been
modified. In this section, we discuss authentication as a constraint on possible
receivers of a message. Note that this sort of authentication is similar to but
distinct from user authentication, which we discuss in Section 18.5.

An authentication algorithm consists of the following components:

A function S : K > (M — A). Thatis, foreachk € K, $(k) is a function for
generating authenticators from messages. Both 5 and 5(k) for any k should

be efficiently computable functions.
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Afunction V: K — (Mx A — {true, false}). That is, for each k ¢ K,
V(k) is a function for verifying authenticators on messages. Both V and
V(k) for any k should be efficiently computable functions.

The critical property that an authentication algorithm must possess is this:
For a message m, a computer can generate an authenticator 4 € A such
that V(k)(m,a) = true only if it possesses S(k). Thus, a computer holding
S5{k) can generate authenticators on messages so that any other computer
possessing V(k) can verify them. However, a computer not holding 5(k) cannot
generate authenticators on messages that can be verified using V{k). Since
authenticators are generally exposed (for example, they are sent on the network
with the messages themselves), it must not be feasible to derive S(k) from the
authenticators.

Just as there are two types of encryption algorithms, there are two main
varieties of authentication algorithms. The first step in understanding these
algorithms is to explore hash functions. A hash function creates a small, fixed-
sized block of data, known as a message digest or hash value, from a message.
Hash functions work by taking a message in n-bit blocks and processing the
blocks to produce an n-bit hash. H must be collision resistant on m— that
1s, it must be infeasible to find an m' # m such that H{m) = H(m'). Now, if
H(n1) = H(m'), we know that m; = my—that is, we know that the message has
not been modified. Common message-digest functions include MDs, which
produces a 128-bit hash, and SHA-1, which outputs a 160-bit hash.

Message digests are useful for detecting changed messages but are not
useful as authenticators. For example, H(m) can be sent along with a message;
but if H is known, then someone could modify mr and recompute H(m), and
the message modification would not be detected. Therefore, an authentication
algorithm takes the message digest and encrypts it.

The first type of authentication algorithm uses symmetric encryption. In a
message-authentication code (MAC), a cryptographic checksum is generated
from the message using a secret key. Knowledge of V(k) and knowledge of
5(k) are equivalent: One can be derived from the other, so ¥ must be kept
secret. A simple example of a MAC defines S(k)(m) — f(k, H(m)), where f is
a function that is one-way on its first argument (that is, k cannot be derived
from f (k. H(m))). Because of the collision resistance in the hash function, we
are reasonably assured that no other message could create the same MAC. A
suitable verification algorithm is then Vik)m.a) = (f(k.m) = a). Note that k
is needed to compute both S(k) and V(k), so anyone able to compute one can
compute the other.

The second main type of authentication algorithm is a digital-signature
algorithm, and the authenticators thus produced are called digital signatures.
In a digital-signature algorithm, it is computationally infeasible to derive $(k,)
from V(k,.); in particular, V is a one-way function. Thus, k&, is the public key
and k; is the private key. .

Consider as an example the RSA digital-signature algorithm. It is similar
to the RSA encryption algorithm, but the key use is reversed. The digital
signature of a message is derived by computing S(k.)(m) = H (m)¥ mod N.
The key k, again is a pair {d, Nj, whete N is the product of two large, randomly
chosen prime numbers p and 4. The verification algorithm is then V{k Y(m.a) =
(a* mod N = H{m)), where k, satisfies ks mod (p — 1)(g — 1) = 1.
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If encryption can prove the identity of the sender ot a message, then why do
we need separate authentication algorithms? There are three primary reasons.

Authentication algorithms generally require tewer computations (with
the notable exception of RSA digital signatures). Over large amounts of
plaintext, this efficiency can make a huge difference in resource use and
the time needed to authenticate a message. '

An authenticator of a message is almost always shorter than the mes-
sage and its ciphertext. This improves space use and transmission time
efficiency.

Sometimes, we want authentication but not éonﬁdentia]ity. For example,
a company could provide a software patch and could “sign™ that patch to
prove that it came from the company and that it hasn’t been modified.

Authentication is a component of many aspects of security. For example, it
is the core of nonrepudiation, which supplies proof that an entity performed an
action. A typical example of nonrepudiation involves the filling out of electronic
forms as an alternative to the signing of paper contracts. Nonrepudiation
assures that a person filling out an electronic form cannot deny that he did
so.

18.4.1.4 Key Distribution

Certainly, a good part of the battle between cryptographers (those inventing
ciphers) and cryptanalysts (those trying to break them) involves keys. With
symmetric algorithms, both parties need the key, and no one else should
have it. The delivery of the syrametric key is a huge challenge. Sometimes
it is performed out-of-bard—say, via a paper document or a conversation.
These methods do not scale well, however. Also consider the key-management
chalienge. Suppose a user wanted to communicate with N other users privately.
That user would need N keys and, for more security, would need to change
those keys frequently.

These are the very reasons for cfforts to create asymmetric key algorithms.
Not only can the keys be exchanged in public, but a given user needs only one
private key, no matter how many other people she wants to communicate with,
There is still the matter of managing a public key per party to be communicated
with, but since public keys need not be secured, simple storage can be used for
that key ring.

Unfortunately, even the distribution of public keys requires some care.
Consider the man-in-the-middle attack shown in Figure 18.9. Here, the person
who wants to receive an encrypted message sends out his public key, but an
attacker also sends her “bad™ public key (which matches her private key). The
person who wants to send the encrypted message knows no better and so uses
the bad key to encrypt the message. The attacker then happily decrypts it.

The problem is one of authentication-—what we need is proof of who (or
what) owns a public key. One way to solve that problem involves the use
of digital certificates. A digital certificate is a public key digitally signed by
a trusted party. The trusted party receives proof of identification from sorne
entity and certifies that the public key belongs to that entity. But how do we
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Figure 18.9 A man-in-the-middle attack on asymmetric cryptography.

know we can trust the certifier? These certificate authorities have their public
keys included within web browsers (and other consumers of certificates) before
they are distributed. These certificate authorities can then vouch for other
authorities (digitally signing the public keys of these other authorities), and
s0 on, creating a web of trust. The certificates can be distributed in a standard
X.509 digital certificate format that can be parsed by computer. This scheme is
used for secure web communication, as we discuss in Section 18.4.3.

18.4.2 Implementation of Cryptography

Network protocols are typically organized in layers, each layer acting as a client
to the one below it. That is, when one protocol generates a message to send
to its protocol peer on another machine, it hands its message to the protocol
below it in the network-protocol stack for delivery to its peer on that machine.
For example, in an IP network, TCP (a transpori-layer protocol) acts as a client
of IP (a network-layer protocol): TCP packets are passed down to IP for delivery
to the TCP peer at the other end of the TCP connection. IP encapsulates the TCP
packet in an IP packet, which it similarly passes down to the data-link layer to be
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transmitted across the network to its IP peer on the destination computer. This
IP peer then delivers the TCP packet up to the TCP peer on that machine. All in
all, the 1SO Reference Model, which has been almost universaily adopted as a
model for data networking, defines seven such protocol layebs. (You will read
more about the ISO model of networking in Chapter 14; Figure 14.6 shows a
diagram of the model.)

Cryptography can be inserted at almost any layer in the ISO model. SSL
(Section 18.4.3), for example, provides security at the transport layer. Network-
layer security generally has been standardized on IPSec, which defines P
packet formats that allow the insertion of authenticators and the encryption
of packet contents. It uses symmetric encryption and uses the IKE protocol
for key exchange. IPSec is becoming widely used as the basis for virtual
private networks (VPNs), in which all traffic between two iPSec endpoints
is encrypted to make a private network out of one that may otherwise be
public. Numerous protocols also have been developed for use by applications,
but then the applications themselves must be coded to implement security.

Where is cryptographic protection best placed in a protocol stack? In
general, there is no definitive answer. On the one hand, more protocols benefit
from protections placed lower in the stack. For example, since IP packets
encapsulate TCP packets, encryption of IP packets (using IPSec, for example) also
hides the contents of the encapsulated TCP packets. Similarly, authenticators
on IP packets detect the modification of contained TCP header information.

On the other hand, protection at lower layers in the protocol stack may give
insufficient protection to higher-layer protocols. For example, an application
server that runs over TPSec might be able to authenticate the client computers
from which requests are received. However, to authenticate a user at a client
computer, the server may need to use an application-level protocol—for
example, the user may be required to type a password. Also consider the
problem of e-mail. E-mail delivered via the industry standard SMTP protocol is
stored and forwarded, frequently multiple times, before it is delivered. Each of
these hops could go over a secure or insecure network. For e-mail to be secure,
the e-mail message needs to be encrypted so that its security is independent of
the transports that carry it.

18.4.3 An Example: SS.

SSL 3.4} is a cryptographic protocol that enables two computers to communicate
securely-——that is, so that each can limit the sender and receiver of messages
to the other. Tt is perhaps the most commonly used cryptographic protocol
on the Internet today, since it is the standard protocol by which web browsers
communicate securely with web servers. For completeness, we should note that
SSL was designed by Netscape and that it evolved into the industry standard
TLS protocol. In this discussion, we use SSL to mean both SSL and TLS.

SSL is a complex protocol with many options. Here, we present only a
single variation of it, and even then in a very simplified and abstract form,
s0 as to maintain focus on its use of cryptographic primitives. What we are
about to see is a complex dance in which asymmetric cryptography is used
so that a client and server can establish a secure session key that can be used
for symmetric encryption of the session between the two—all of this while
avoiding man-in-the-middle and replay attacks. For added cryptographic
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strength, the session keys are forgotten once a session is completed. Another
communication between the two would require generation of new session
keys.

The SSL protocol is initiated by a client ¢ to communicate securely with a
server. Prior to the protocol’s use, the server s is assumed to have obtained a
certificate, denoted cert,, from certification authority CA. This certificate is a
structure containing the following:

Various attributes attrs of the server, such as its unique distinguished name
and its conpron (DNS) name

The identity of a public encryption algorithm E () for the server
The public key k. of this server

A validity interval intervat during which the certificate should be conmd -
ered valid

A digital signature 2 on the above information by the CA—that is,
a = S(kc 4 )({ attrs, E(k.), interval })

In addition, prior to the protocol’s use, the client is presumed to have obtained
the pubhc verification algorithm V (ke 1) for CA. In the case of the Web, the user's
browser is shipped from its vendor containing the verification algorithms and
public keys of certain certification authorities. The user can add or delete these
for certification authorities as she chooses.

When¢ connects tos, it sends a 28-byte random value #1. to the server, which
responds with a random value n, of its own, plus its certificate cert,. The client
verifies that Vike 4)({ attrs, E(k,), interval}, a) = true and that the current time
is in the validity interval interval. If both of these tests are satisfied, the server
has proved its identity. Then the client generates a random 46-byte premaster
secret pms and sends cpms = E(k)}(pms) to the server. The server recovers
pms = D(k;){cpms). Now both the client and the server are in possession of
e, 1, and pms, and each can compute a shared 48- -byte master secret ms =
f(n., n,, pms), where f is a one-way and collision-resistant function. Only the
server and client can compute ms, since only they know pms. Moreover, the
dependence of ms on i, and i, ensures that ms is a fresh value—that is, a
session key that has not been used in a previous communication. At this point,
the client and the server both compute the following keys from the ms:

A symmetric encry ption key k5™ for encrypting messages from the client
to the server

A symmetric encryption key k5P for encrypting messages from the server
to the client

A MAC generation key k73 for generating authenticators on messages
from the client to the server :

A MAC generation key k7% for generating authenticators on messages
from the server to the client

To send a message # to the senver, the client sends
g
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¢ = EGEYPY((m. SkT2)(m))).
Upon receiving ¢, the server recovers

(m, ay = D))
and accepts m if V(k[[®)(m, a) = true. Similarly, to send a message m to the
client, the server sends

¢ = EGEYPY((m, S(T2C)(m)))
and the client recovers
{m.a) = D(kfcrypt)(c)

and accepts m if V(k["*)(m, a) = true.

This protocol enables the server to limit the recipients of its messages to the
client that generated pms and to limit the senders of the messages it accepts to
that same client. Similarly, the client can limit the recipients of the messages it
sends and the sender of the messages it accepts to the party that knows S(k,)
{that is, the party that can decrypt cpms). In many applications, such as web
transactions, the client needs to verify the identity of the party that knows S(k;).
This is one purpose of the certificate cert,; in particular, the attrs field contains
information that the client can use to determine the identity —for example, the
domain name —of the server with which it is communicating. For applications
in which the server also needs information about the client, $5i. supports an

.option by which a client can send a certificate to the server.

In addition to its use on the Internet, SSL is being used for a wide variety
of tasks. For example, TPSec VPNs now have a competitor in SSL VPNs. [PSec

is good for point-to-point encryption of traffic—say, between two company

offices. SSL VPNs are more flexible but not as efficient, so they might be used
between an individual employee working remotely and the corporate office.

The discussion of authentication above involves messages and sessions. But
what of users? If a system cannot authenticate a user, then authenticating that

- amessage came from that user is pointless. Thus, a major security problem for

operating systems is user authentication. The protection system depends on
the ability to identify the programs and processes currently executing, which
in turn depends on the ability to identify each user of the system. A user
normally identifies herself. How do we determine whether a user’s identity
is authentic? Generally, user authentication is based on one or more of three
things: the user’s possession of something (a key or card), the user s knowledge
of something (a user identifier and password), and/or an attribute of the user
(fingerpr‘int, retina pattern, or signature).

18.5.1 Passwords

The most common approach to authenticating a user identity is the use of
passwords. When the user identifies herself by user I or account name, she
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is asked for a password. If the user-supplied password matches the password
stored in the system, the system assumes that the account is being accessed by
the owner of that account.

Passwords are often used to protect objects in the computer system, in
the absence of more complete protection schemes. They can be considered a
special case of either keys or capabilities. For instance, a password could be
associated with each resource (such as a file). Whenever a request is made to
use the resource, the password must be given. If the password is correct, access
is granted. Differenit passwords may be associated with different access rights.
For example, different passwords may be used for reading files, appending
files, and updating files.

In practice, most systems require only one password for a user to gain
full rights. Although more passwords theoretically would be more secure,
such systems tend not to be implemented due to the classic trade-off between
security and convenience. If security makes something inconvenient, then the
security is frequently bypassed or otherwise circumvented.

18.5.2 Password Vulnerabilities

Passwords are extremely common because they are easy to understand and use.
Unfortunately, passwords can often be guessed, accidentally exposed, sniffed, -
or illegally transferred from an authorized user to an unauthorized one, as we
show next.

There are two common ways to guess a password. One way is for the
intruder (either human or program) to know the user or to have information
about the user. All too frequently, people use obvious information (such as the
names of their cats or spouses) as their passwords. The other way is to use brute
force, trying enumeration—or all possible combinations of valid password
characters (letters, numbers, and punctuation on some systems)—until the
password is found. Short passwords are especially vulnerable to this method.
For exampte, a four-decimal password provides only 10,000 variations. On
average, guessing 5,000 times would produce a correct hit. A program that
could try a password every millisecond would take only about 5 seconds to
guess a four-digit password. Enumeration is less successful where systems
allow longer passwords that include both uppercase and lowercase letters,
along with numbers and all punctuation characters. Of course, users must take
advantage of the large password space and must not, for example, use only
lowercase letters.

In addition to being guessed, passwords can be exposed as a result of
visual or electronic monitoring. An intruder can look over the shoulder of a
usert (shoulder surfing) when the user is logging in and can learn the password
easily by watching the keyboard. Alternatively, anyone with access to the
network on which a computer resides can seamlessly add a network menitor,
allowing her to watch all data being transferred on the network (sniffing),
including user IDs and passwords. Encrypting the data stream containing the
password solves this problem. Even such a system could have passwords
stolen, however. For example, if a file is used to contain the passwords, it
could be copied for off-system analysis. Or consider a Trojan-horse program
installed on the system that captures every keystroke before sending it on to
the application.
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Exposure is a particularly severe problem if the password is written down
where it can be read or lost. As we shall see, some svstems force users to select
hard-to-remember or long passwords, which may cause a user to record the
password or to reuse it As a result, such svstems provide much less security
than systems that allow users to select easy passwords!

The final type of password compromise, illegal transfer, is the result of
human nature. Most computer installations have @ rule that forbids users to
share accounts. This rule is sometimes implemented for accounting reasons but
is often aimed at improving security. For instance, suppose one user I is shared
by several users, and a security breach occurs from that user 1D, [tis impossible
to know whe was using the 1D at the time the break oceurred or even whether
the user was an authumzea one. With one user per user I3, any user can be
questioned directly about use of the account; in addition, the user might notice
something different aboul the account and detect the break-in. Sometimes,
users break account-sharing rules to help friends or te circumvent accounting,
and this behavior can result in a system’s being accessed by unauthorized users
—possibly harmful ones.

Passwords can be either generated by the svstem or selected by a user.
System-generated passwords may be difficult to remember, and thus users may
write them down. As mentioned, however, user-selected passwords are often
easy to guess (the user’s name or favorite car, for exampie}. Some svstems will
check a proposed password for case of guessing or cracking before accepting it.
At some sites, administrators occasionally check user passwords and notify a
user if his password is easy to guess. Some systems also age passwords, forcing
users to change their pa%\«'ord% at regular intervals {every three months, for
instance). This method is not foolprecf either, because users can easily toggle
between two passwords. The solution, as implemented on some 5ysttms, s to
record a password history for each user. For instance, the system could record
the last N passwords and not allow their reuse.

Several variants on these simple password schermes can be used. For
example, the password can be changed more trequently. In the extreme, the
password is changed from session to session. A new password is selected
(either by the system or by the user) at the end of encl session, and that password
must be used for the next session. In such a case, even if a password is misused,
it can be used only vnce. When the legitimate user tries to use a now-invalid
password at the next session, he discovers the securitv violation. Steps can then
be taken to repair the breached security,

18.5.3 Encrypted Passwords

One problem with all these approaches is the difficulty of keeping the password
secret within the computer. How can the system store a password securely yet
allow its use for authentication when the user presents her password? The
UNIX system uses encryption to avoid the necessity of keeping its password
list secret. Each user has a password. The svstem contains a function that is
extremely difficult—the designers hope impossible—to invert but is simple
to compute. That js, given a value x, it is easy te compute the function value
F{x). Given a function value (1), however, it is impossible to compute x. This
function is used to encode all passwords. Only encoded passwords are stored

When a user presents a password, it is encoded and compared against the
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stored encoded password. Even if the stored encoded password is seen, it
cannot be decoded, so the password cannot be determined. Thus, the password
file does not need to be kept secret. The function f(x) is typically an encryption
algorithm that has been designed and tested rigorously.

The flaw in this method is that the system no longer has control over
the passwords. Although the passwords are encrypted, anyone with a copy
of the password file can run fast encryption routines against it—encrypting
each word in a dictionary, for instance, and comparing the results against
the passwords. If the user has selected a password that is also a word in the
dictionary, the password is cracked. On sufficiently fast computers, or even
on clusters of slow computers, such a comparison may take only a few hours.
Furthermore, because UNIX systems use a well-known encryption algorithm,
a cracker might keep a cache of passwords that have been cracked previously.
For these reason, new versions of GNIX store the encrypted passwaord entries in
a file readable only by the superuser. The programs that compare a presented
password to the stored password run setuid to root; so they can read this file,
but other users cannot. They also include a “salt,” or recorded random number,
in the encryption algorithm. The salt is added to the password to ensure that
if two plaintext passwords are the same, they result in different ciphertexts.

Another weakness in the UNIX password methods is that many UNIX
systems treat only the first eight characters as significant. It is therefore
extremely important for users to take advantage of the available password
space. To avoid the dictionary encryption method, some systems disallow the
use of dictionary words as passwords. A good technigue is to generate your
password by using the first letter of each word of an easily remembered phrase
using both upper and lower characters with a number or punctuation mark
thrown in for good measure. For example, the phrase “My mother’s name is
Katherine™ might yield the password "Mmn.isK!". The password is hard to
crack but easy for the user to remember.

18.5.4 One-Time Passwords

To avoid the problems of password sniffing and shoulder surfing, a system
could use a set of paired passwords. When a session begins, the system
randomly selects and presents one part of a password pair; the user must
supply the other part. In this system, the user is challenged and must respond
with the correct answer to that challenge.

This approach can be generalized to the use of an algorithm as a password.
The algorithm might be an integer function, for example. The system selects a
random integer and presents it to the user. The user applies the function and
replies with the correct result. The system also applies the function. If the two
results match, access is allowed.

Such algorithmic passwords are not susceptible to reuse; that is, a user can
type in a password, and no entity intercepting that password will be able to
reuse it. In this variation, the system and the user share a secret. The secret is
never transmitted over a medium that allows exposure. Rather, the secret is
used as input to the function, along with a shared seed. A seed is a random
number or alphanumeric sequence. The sced is the authentication challenge
from the computer. The secret and the seed are used as input to the function
J(secret, seed). The result of this function is transmitted as the password to the
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computer. Because the computer also knows the secret and the seed, it can
perform the same computation. If the results match, the user is authenticated.
The next time the user needs to be authenticated, another seed is generated,
and the same steps ensue. This time, the password is different.

In this one-time password system, the password is different in each
instance. Anyone capturing the password from one session and trying to reuse
it in another session will fail. One-time passwords are among the only ways to
prevent improper authentication due to password exposure.

One-time password systems are implemented in various ways. Commer-
cial implementations, such as SecurlD, use hardware calculators. Most of these
calculators are shaped like a credit card, a key-chain dangle, or a USB device;
they include a display and may or may not alse have a keypad. Some use
the current time as the random seed. Others require that the user enters the
shared secret, also known as a personal identification number or PIN, on the
keypad. The display then shows the one-time password. The use of both a
one-time password generator and a PIN is one form of two-factor authentica-
tion. Two different types of components are needed in this case. Two-factor
authentication offers far better authentication protection than single-factor
authentication.

Another variation on one-time passwaords is the use of a code book, or
one-time pad, which is a list of single-use passwords, In this method, each
password on the list is used, in order, once, and then is crossed out or erased.
The commonly used S/Key system uses either a software calculator or a code
book based on these calculations as a source of one-time passwords. Of course,
the user must protect his code book.

18.5.5 Biometrics

Another variation on the use of passwords for authentication involves the use
of biometric measures. Palm- or hand-readers are commonly used to secure
physical access—for example, access to a data center. These readers match
stored parameters against what is being read from hand-reader pads. The
parameters can include a temperature map, as well as finger length, finger
width, and line patterns. These devices are currently too large and expensive
to be used for normal computer authentication.

Fingerprint readers have become accurate and cost-effective and should
become more common in the future. These devices read your finger’s ridge
patterns and convert them into a sequence of numbers. Over time, they can
store a set of sequences to adjust for the location of the finger on the reading
pad and other factors. Software can then scan a finger on the pad and compare
its features with these stored sequences to determine if the finger on the pad is
the same as the stored one. Of course, muitiple users can have profiles stored,
and the scanner can differentiate among them. A very accurate two-factor
authentication scheme can result from requiring a password as well as a user
name and fingerprintscan. If this information is encrypted in transit, the system
can be very resistant to spoofing or replay attack.

Multi-factor authentication is better still. Consider how strong authentica-
tion can be with a USB device that must be plugged into the system, a PIN, and
a fingerprint scan. Except for the user’s having to place her finger on a pad and
plug the USB into the system, this authentication method is no less convenient
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that using normal passswvords. Recall, though, that strong authentication by
itsett is not sufficient to guarantec the i of the user. An authenticated session
can still be hijacked, if it is not encrypted.

Just as there are myriad threats to systemn and network security, there are many
security solutions. The solutions run the gamut frosn improved user education,
through technology, to wriling bug-free software. Most security professionals
subscribe to the theory of defense in depth, which states that more layers
of defense are better than fewer lavers. Of course, this theory applies to any
kind of security. Consider the security of a house without a door lock, with
a door lock, and with a lock and an alarm. In this section, we look at the
major methods, tools, and techniques that can be used to improve resistance
to threats.

18.6.1 Security Policy

The first step toward i Improv 111b the secunty of any aspect of computmg is to
have a securlty policy. Policies vary widely but generally include a statement
of what is being secured. For anmple, a policy might state that all outside-
accessible applicaticns must have a code review before being deployed, or that
users should not share their passwords, or that all connection points between a
company and the outside must have port scans run every six months. Without
a policy in place, it is impossible for users and administrators to know what
is permissible, what is required, and what is not allowed. The pelicy is a road
map to security, and if a site is trying to move from less secure to more secure,
it needs a map to know how to get there.

Once the security policy is in place, the people it affects should know it
well. Tt should be their guide. The policy should also be a living document
that is reviewed and updated pericdically to ensure that it is stili pertinent and
still followed.

18.6.2 Vulnerability Assessment

How can we determine whether a security policy has been correctly imple-
mented? The best way is to execute a vulnerability assessment. Such assess-
ments can cover broad ground, from social engineering through risk assess-
ment to port scans. For example, risk assessment endeavors to value the assets
of the entity in question (a program, a management team, a system, or a
facility) and determine the odds that a security incident will affect the entity
and decrease its value. When the odds of suffering a loss and the amount of the
potential loss are known, a value can be placed on trying to secure the entity.

The core activity of most vulnerability assessments is o penetration test,
in which the entily is scanned for known vulnerabilities. Because this book is
concerned with operating systems and the software that runs on them, we witl
concentrate on those aspects.

Vulnerability scans tvpically are done at Bmes when computer use is
relatively low, to minimize their impact. When appropriate, they are done on
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test systems rather than production systems because they caninduce unhappy
behavior from the targetsystems or network devices.

A scan within an individual svstem can check a variety of aspects of the
systemn

Short or casy-to-guess passw ords
. Unauthorized privileged programs, such as sefiid programs
Unauthorized programs in system directories
Unexpectedly long-running processes
Improper direciory protections on user and svstem directories

improper protections on system data fles, such as the password file. device
drivers, ot the operating-system kernel itsclf

Dangerous entries in the program scarch path (for exampie, the Trojan
horse discussed in Section 18.2.1)

Changes to system programs detected with checksum values

Unexpected or hidden network daemons

v problems found by a security scan can be either fixed automatically or
rcpnrted to the managers of the system.

Networked computers are much more susceptible to security attacks than
are standalone systems. Rather than attacks from o known set of access
points, such as directly connected terminals, we {ace attacks trom an unknown
and large set of access points—a potentially severe security problem. To a
lesser extent, systems connected to telephone lines via moedems are also more
expused.

In fact, the US, government considers a svstem to be ooly as secure as its
most far-reaching connection. For instance, a top-secret system may heaceessed
only from within a building atso considered top-secret. Fhe system loses it= top-
secret rating if any form of communication can occur vutside that environment,
Some government facilities take extreme security precautjons The connectors
that plug a terminal into the secure computer are iocked in a safe in the office
when the terminal js not in use. A person must have pruper Dto ,t_,am access to
the building and her office, must know a physical lock combination, and must
know authentication information for the computer itscif to gain access to the
computer — an example of multi-factor authentication.

Unfortunately for systems administrators and computer-security protes-
sionals, itis frequpntlv tmpusslble to lock a mackine in a reom and aizaliow all
remote access. For instance, the Internet network currently connects mitlions of
cormputers. It is becoming a mission-critical, indispensable resource for mam
companies and individuals. If vou conarder the Interneca club, then, as in any
ciub with millions of members, there are many good members and some had
members. The bad members have many lools they can use to atlempt to gain
access to the interconnected com;itters, just as Morris did with his worm.

Vulnerability scans can be applied to networks to address some of the
problems with network sccurity. The scans search a network tor ports that
respond to a request. If services are enabled that should not be, access to them



658

Chapter 18

can be blocked, or they can be disabled. The scans then determine the details
of the application listening on that port and try to determine if cach has any
known vulnerabilities. Testing those vulnerabilities can determine if the system
is misconfigured or is lacking needed patches.

Finally, though, consider the use of port scanners in the hands of a cracker
rather than someone trying to improve security. These tools could help crackers
find vulnerabilities to attack. (Fortunately, it is possible to detect port scans
through anomaly detection, as we discuss next.) It is a general challenge to
security that the same tools can be used for good and for harm. In fact, some
people advocate security through obscurity, stating that tools should not be
written to test security so that security holes will be harder to find {and exploit).
Others believe that this approach to security is not a valid one, pointing out,
for example, that crackers could write their own tools. It seems reasonable that
security through obscurity be considered one of the layers of security only so
long as it is not the only layer. For example, a company could publish its entire
network configuration information; but keeping that information secret makes
it harder for intruders to know what to attack or to determine what might be
detected. Even here, though, a company assuming that such information will
remain a secret has a false sense of security.

18.6.3 Intrusion Detection

Securing systems and facilities is intimately linked to intrusion detection. Intru-
sion detection, as its name suggests, strives to detect attempted or successful
intrusions into computer systems and to initiate appropriate responses to the
intrusions. Intrusion detection encompasses a wide array of techniques that
vary on a number ot axes. These axes include:

The time that detection occurs. Detection can occur in real ime (while the
intrusion is occurring) or after the fact.

The types of inputs examined to detect intrusive activity. These may
include user-shell commands, process system calls, and network packet
headers or contents. Some forms of intrusion might be detected only by
correlating information from several such sources.

The range of response capabilities. Simple forms of response include

. alerting an administrator to the potential intrusion or somehow halting
the potentially intrusive activity—for example, killing a process engaged
in apparently intrusive activity. In a sophisticated form of response, a
system might transparently divert an intruder’s activity to a honeypot—
a false resource exposed to the attacker. The resource appears real to the
attacker and enables the system to monitor and gain information about the
attack.

These degrees of freedom in the design space for detecting intrusions have
yielded a wide range of solutions, known as intrusion-detection systems
(IDSs) and intrusion-prevention systems (IDPs). IDS systems raise an alarm
when an intrusion is detected, while [DP systems act as routers, passing traffic
unless an intrusion is detected (at which point that traffic is blocked).
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But just what constitutes an intrusion? Defining a suitable specification of
intrusion tums out to be quite difficult, and thus automatic IDSs and IDPs today
typically settle for one of two less ambitious approaches. In the first, called
signature-based detection, system input or network traffic is examined for
specific behavior patterns (or signatures) known to indicate attacks. A simple
example of signature-based detection is scanning network packets for the string
fetc/passwd/ targeted for a UNIX system. Another example is virus-detection
software, which scans binaries or network packets for known viruses.

The second approach, typically called anomaly detection, attempts
threcugh various techniques to detect anomalous behavior within computer
systems. Of course, not alt anomalous system activity indicates an intrusion,
but the presumption is that intrusions often induce anomalous behavior. An
example of anomaly detection is monitoring system calls of a daemon process
to detect whether the system-call behavior deviates from normal patterns,
possibly indicating that a buffer overflow has been exploited in the daemon
to corrupt its behavior. Another example is monitoring shell commands to
detect anomalous commands for a given user or detecting an anomalous login
time for a user, either of which may indicate that an attacker has succeeded in
gaining access to that user’s account.

Signature-based detection and anomaly detection can be viewed as two
sides of the same coin: Signature-based detection aitempts to characterize
dangerous behaviors and detects when one of these behaviors occurs, whereas
anomaly detection attempts to characterize normal (or non-dangerous) behav-
iors and detects when something other than these behaviors occurs.

These different approaches yield 1D3s and 1DPs with very different proper-
ties, however. In particular, anomaly detection can detect previously unknown
methods of intrusion (so-called zero-day attacks). Signature-based detection,
in contrast, will identify only known attacks that can be codified in a rec-
ognizable pattern. Thus, new attacks that were not contemplated when the
signatures were generated will evade signature-based detection. This problem
is well known to vendors of virus-detection software, who must release new
signatures with great frequency as new viruses are detected manually.

Anomaly detection is not necessarily superior to signature-based detection,
however. Indeed, a significant challenge for systems that attempt anomaly
detection is to benchmark “normal” system behavior accurately. If the system
is already penetrated when it is benchmarked, then the intrusive activity may
be included in the “normal™ benchmark. Even if the system is benchmarked
cleanly, without influence from intrusive behavior, the benchmark must give
a fairly complete picture of normal behavior. Otherwise, the number of false
positives (false alarms) or, worse, false negatives (missed intrusions) will be
excessive.

To illustrate the impact of even a marginally high rate of false alarms,
consider an installation consisting of a hundred UNIX workstations from which
records of security-relevant events are recorded for purposes of intrusion
detection. A small installation such as this could easily generate a million
audit records per day. Only one or two might be worthy of an adininistrator’s
investigation. If we suppose, optimistically, that each such attack is reflected in
ten audit records, we can then roughly compute the rate of occurrence of audit
records reflecting truly intrusive activity as
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yintrusions 10 records
dav ntruston
- = 3.0002.

100 records
day

Interpreting this as a “probability of occurrence of intrusive records,” we
denote it as P{I'}: that is, event [ is the occurrence of a record reflecting truly
intrusive behavior Since P(/) = 0.00002, we also know that P(=1} = 1 —P(I} =
099998, Now let A denote the raising of an alarm by an TDS. An accurate 105
should maximize both P(1|A) and P(=]}—A)—that is, the probabilities that an
alarm indicates an intrusion and that no alarm indicates no intrusion. Focusing
on P{[1A) for the moment, we can compute it using Bayes’ theorem:

P{Y - PLAT

P(lid) = —
N = ST AT T PEh PLISD

0.60002 - PeATY
0.00002 - PEAT Y + 099998 . PoAl=T)

Naw consider the impact of the false-alarm rate P(Ai—=i) on P(I|A). Even
with & very good true-alarm rate of P(A{l) — 0.8, a seemingly good false-
alarm rate of P(AI=/) = 0.0007 yicids P{ii4) ~ (.14, That is, fewer than one
in every seven alarms indicates a real intrusion! In systems where a security
administrator investigates each alarm, a high rate of false alarms-—called a
“Christrnas tree effect”™ —is exceedingly wasteful and will quickly teach the
administrator to ignore alarms,

This example illustrates a general principle for 1DSs and 1DPs: For usability,
they must offer an extremely lm\' false-alarm rate. Achioving a sufficiently
low false-alarm rate is an especially serious challenge for ;momalv detection
svstems, as mentioned, because ot the difficultios of wden]mtelv bemhmarkm
normal system behavion However, research continues to improve anomaiy-
detection techniques. Intrusion detection software is evolving to implement
signatures, anomaly algorithms, and other algorithms and to combine the
results to arrive at a more accurate anamd]_\-’—d:‘toction rate.

18.6.4 Virus Protection

As we have seen, viruses cain and do wreak havoc on systems. Protection from
viruses thus is an important security concern. Antivirus programs are often
used to provide this proleci&m‘. Somw of these prograrmes are effective againsl
only particular hown viruses. They swork by searching all the programs on
& sysiem for the Apec ific pattern of mstr uchuus known to make up the virus.
When 1 wyv Hind @ known pattern, they remove the instructions, disinfecting
the program. Antivirus programs may have catatogs of thousands of viruses
for which they search,

Both viruses and antivieas softw are continue to become maore sophisticated.
Some viruses maodity themsels es as they infect other sottware to avoid the basic
pattern- -match apr pmach of andivirus programs. Anlivirus programs in turn
now Jook for tamilies of patterns rather than a single pattern to identify a virus.
In fact, some anti-virus programs implement a variety of detection algorithms.
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Thev can decompress compressed viruses before checking for a signature.
Some also look for process anomalics. A process opening an executable file
for writing is suspicious, for example, unless it is a compiler. Another popular
technique is to run a program in a sandbox, which is a controlled or emulated
section of the system. The antivirus software analyzes the behavier of the code
in the sandbax befure letting it run unmenitored. Some antivirus programs also
put up a complete shield rather than just scanning files within a file system.
Thev search boot sectors, memory, inbound and outbournd e-mait, files as they
are downloaded, files on removable devices or media, and so on.

The best protection nﬁamst compifer v Fuses 18 provontmn or the practice
of safe computing. 'urchasing unupuned sottware from vendors and aveiding
free vr pirated copies from public sources or disk exchange offer the safest
route to preventing infection. However, even new copies of legitimate software
applications are not immune to viras infection: There have been cases where
disgruntled emplovees of a software company have infected the master copies
of software programs to do economic harm to the company selling the sottware.
For macro viruses, one defense is to exchange Word documenis in analternative
file format called rich text format (RTF). Unlike the native Word format, RIF
does not include the capability to attach macros.

Another defense is toavoid opening any ¢-mail attachments from unknown
users, Unfortunately, history has shown that e-mail vulnerabilities appear as
fast as they are fixed. For example. in 2000, the love bug virus became very
widespread by appearing to be a love note sent by a friend of the receiver. Once
the attached Visual Basic script was opened, the virus propagated by sending
itself to the first nsers in the user’s ¢-mail contact list. Fortunately, except
for clogging e-mail systems and users” inboxes, it was relatively harmless. 1t
did, however, effectively negate the defensive strategv of opening attachments
only from people known to the receiver. A more effective detense method is
to avoid opening anv e-mail attachment that contains executable code. Some
companies now enforce this as policy b removing all incoming attachments
to o-mmail messases,

Anather sategnard, although it dues not prevent infection, does permit
early detection. A user must begin v completely reformatting the hard disk,
especially the boot sector, which is often targeted for viral attack. Only secure
software is uploaded. and a signature of cach program is taken via a secure
message-digest computation, The resulting filename and associated message-
digest list mast then be kept free from unauthorized access. Periodically, or
each time a program isrun, the operating system recomputes the signature and
compares it with the signature on the ariginal list. any differences serve as a
warning of possible infection. This technique can be combined with others. For
example, a high-overhead antivirus scan, such as a sandbox, can be used; and
it a program passes the test, a signature can be created for it If the signatures
match the next time the program is run, it does not need to be virus-scanned
again.

18.6.5 Auditing, Accounting, and L.ogging

Auditing, accounting, and logging can decrease system performance, but they
are useful in several areas, including security. Logaing can be genceral or
specific All system-call executions can be lnhhcd for analysis of program
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behavior (or misbehavior). More typically, suspicious events are logged.
Authentication failures and authorization failures can tell us quite a lot about
break-in attempts.

Accounting is another potential tool in a security administrator’s kit. It
can be used to find performance changes, which in turn can reveal security
problems. One of the early UNIX computer break-ins was detected by Clitf
Stoll when he was examining accounting logs and spotted an anomaly,

We turn next to the question of how a trusted computer can be connected
safely to an untrustworthy network. One solution is the use of a firewall to
separate trusted and untrusted systems. A firewall is a computer, appliance,
or router that sits between the trusted and the untrusted. A network firewall
limits network access between the two security domains and monitors and
logs all connections. It can also limit connections based on source or destination
address, source or destination port, or direction of the connection. For instance,
web servers use HTTP to communicate with web browsers. A firewall therefore
may allow only HTTP to pass from all hosts outside the firewall to the web
server within the firewall. The Morris Internet worm used the £ inger protocol
to break into computers, so finger would not be allowed to pass, for example.

In fact, a network firewall can separate a network into muitipte domains.
A common implementation has the [nternet as the untrusted domain; a semni-
trusted and semi-secure network, called the demilitarized zone (DMZ), as
another domain; and a company’s computers as a third domain (Figure
18.10). Connections are allowed from the Internet to the DMZ computers and
from the company computers to the Internet but are not allowed from the
Internet or DMZ computers to the company computers. Optionaily, controlled

Internet access from company’'s
computers

/\’ N A~ TN
\fn/temet ﬁ o 1 company computers

A~

access between DMZ and
company's computers

DMZ access from Internet

.

-

& DMZ
"

Figure 18.10 Domain separation via firewall.
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communications may be allowed between the DMZ and one company computer
or more. Forinstance, a web server on the DMZ may need to query a database
server on the corporate network. With a firewall, however, access is contained,
and any DMZ systems that are broken into still are unable to access the company
computers.

Of course, a firewall itself must be secure and attack-proof; otherwise, its
ability to secure connections can be compromised. Furthermore, firewalls do
not prevent attacks that tunnel, or travel within protocols or connections that
the firewall allows. A buffer-overflow attack to a web server will not be stopped
by the firewall, for example, because the HTTI connection is allowed; it is the
contents of the HTTP connection that house the attack. Likewise, denial-of-
service attacks can affect firewalls as much as any other machines. Another
vulnerability of firewalls is spoofing, in which an unautherized host pretends
to be an authorized host by meeting some authorization criterion. For example,
if a firewall rule allows a connection from a host and identifies that host by its
1P address, then another host could send packets using that same address and
be allowed through the firewall.

In addition to the most common network firewalls, there are other, newer
kinds of firewalls, each with its pros and cons. A personal firewall is a
software layer either included with the operating system or added as an
application. Rather than limiting communication between security demains,
it limits communication to (and possibly from) a given host. A user could
add a personal firewall to her PC so that a Trojan horse would be denied
access to the network to which the PC is connected. An application proxy
firewall understands the protocols that applications speak across the network.
For example, SMTP is used for mail transfer. An application proxy accepts a
connection just as an SMTP server would and then initiates a connection to
the original destination SMTP server. It can monitor the traffic as it forwards
the message, watching for and disabling illegal commands, attempts to exploit
bugs, and so on. Some firewalls are designed for one specific protocol. An
XML firewall, for example, has the specific purpose of analyzing XML traftic
and blocking disallowed or malformed XML. System-call firewalls sit between
applications and the kernel, monitoring system-call execution. For example,
in Solaris 10, the “least privilege” feature implements a list of more than fifty
system calls that processes may or may not be allowed to make. A process that
does not need to spawn other processes can have that ability taken away, for
instance.

The U.S. Department of Defense Trusted Computer System Evaluation Criteria
specify four security classifications in systems: A, B, C, and D. This specification
is widely used to determine the security of a facility and to model security
solutions, so we explore it here, The lowest-level classification is division I, or
minimal protection. Division D includes only one class and is used for systems
that have failed to meet the requirements of any of the other security classes.
For instance, MS-DOS and Windows 3.1 are in division D.

Division C, the next level of security, provides discretionary protection and
accountability of users and their actions through the use of audit capabitities.
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Division C has two levels: C1 and C2. A Cl-class system incorporates some
farm of controls that allow users to protect private informationi and to
keep other users from accidentally reading or destroying their data. A (1
environment is one in which cooperating users access data at the same levels
of sensitivity. Most versions of UNIX are C1 class.

The sam total of all protection systems within a compuater system (hared-
ware, software, firmware) that correctly enforce a secu rity policy is known as a
trusted computer base (TCB). The TCB of a CI system controls access between
users and files by allowing the user to specify and control sharing of objects
by named individuals or defined groups. In addition, the TCB requires that the
users identity themselves before they startany activities that the TCB s expected
to mediate. This identification is accomplished via a protected mechanism or
password; the TCB protects the authentication data so that they are inaccessible
to unauihorized users.

A C2-class system adds an individual-level access control to the require-
ments of a C1 system, For example, access rights of a file can be specified
to the Tevel of a single individual. Tn addition, the system administrator can
selectively audit the actions of any one or more users based on individual
identity. The TCB abso protects itself from modification of its code or data
structures. in addition, no information produced by a prior user is available
toanother user who accesses a storage object that has been released back 1o
the system. Some special, secure versions of UNIX have been cortified at the C2
Tavel

Pivision-B mandatory-protection systems have all the properties of a class-
CZsvstem; inaddition, they attach a sensitivity label to each object. The b1 class
TR maintains the security label of cack object in the system; the fabel is used
for decisions pertaining to mandatory access control. For example, a user
at the conlidential level could not access a file at the more sensitive secret
fevel The TOB also denotes the sensitivity level at the top and bottom of cach
page of any human-readable outpur. In addition to the noraal user-name-
password authentication information, the TCB alse maintains the chea rance
and atithorizations of individuat users and will support at least two levels of
sceurity, These levels are hicrarchical, so that a user may access any objects
that carry sensitivity labels equal to or lower than his security clearance. For
example, a secret-level user could access a file at ihe confidential fevel in the
abence of other access conlrols. Processes are also isolated through the use of
distinet address spaces.

A B2-class system extends the sensitivity labels ko cach svstem resource,
suciias storage objects. Physical devices are assigned minimum and maximum
sectirity levels that the systerm uses to enforce constraints imposed by the
phiical environments in which the devices are located. In addition, 4 §2
system supporls covert channels and the auditing of events that could lead to
the eaploitation of a covert channel.

A Bi-class system allows the creation of access-control lists that denote
users or groups ot granted access to a given named object. The TCB also
conlaing o mechanism to monitor events that may indicate a violation of
sceurity: policy. The mechanism notifies the security administrator and, if
necessary, ferminates the event in the least disruptive manner.

Fhe highest-level classification is division A. Architecturally, a class-Al
system is functionally equivalent to a B3 system, but it uses formal design
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specifications and verification techniques, granting a high degree of assurance
that the TCB has been implemented correctly. A system beyaond class Al might
be designed and developed in a trusted facility by trusted personnel.

The use of a TCB merely enstires that the system can enforce aspects of a
security policy; the TCB does not specify what the policy should be. Typically,
a given computing environment develops a security policy for certification
and has the plan accredited by a security agency, such as the Nationol
Computer Security Center. Certain computing environments may require other
certitication, such as that supplied by TEMPEST, which guards against electronic
eavesdropping. For example, a TEMPEST-certified system has terminals that
are shielded to prevent electromagnetic fields from escaping. This shielding
ensures that equipment outside the room ur building where the terminal is
housed cannot detect what information is being displaved by the terminal.

Micrasoft Windows XP is a general-purpose operating system designed to
support a variety of security features and methods. In this section, we examine
features that Windows XP uses to perform security functions. For more
information and background on Windows XP, see Chapter 22.

The Windows XP* security medel is based on the notion of user accounts.
Windows XP allows the creation of any number of user accounts, which can
be grouped in any manner. Access to system objects can then be permitted or
denied as desired. Users are identified to the system by a unigee security 1D,
When a user logs on, Windows XI’ creates a security access token that includes
the security ID for the user, security IDs for any groups of which the user is
a member, and a list of any special privileges that the user has. Examples
of special privileges inctude backing up files and directories, shutting down
the computer, logging on interactively, and changing the system clock. BEvery
process that Windows XP runs on behalf of a user will receive a copy of the
access token. The system uses the security IDs in the access token to permit or
deny access to system objects whenever the user, or a process on behalf of the
user, attempts to access the object. Authentication of a user account is typically
accomplished via a user name and password, although the maodular design of
Windows XP allows the development of custom authentication packages. bor
example, a retinal (or eye) scanner might be used to verify that the user is who
she says sheis.

Windows XP uses the idea of a subject to ensure that programs run by a
user do not get greater access to the system than the user is authorized to have.
A subject is used to track and manage permissions for each program that a
user runs; it is composed of the user’s access token and the program acting
on behalf of the user. Since Windows XU operates with a client--server maodel,
two classes of subjects are used to control access: simple subjects and server
subjocts. An example of a simple subject is the typical application program
that a user executes after she logs on. The simple subject is assigned a security
context based on the security access token of the user. A server subject is o
process implemented as a protected server that uses the security context o fthe
client when acting on the client’s behalf.
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As mentioned in Section 18.7, auditing is a useful security technique.
Windows XP has built-in auditing that allows many common security threats
to be monitored. Examples include failure auditing for login and logoff events
to detect random password break-ins, success auditing for login and logoff
events to detect login activity at strange hours, success and failure write-access
auditing for executable files to track a virus outbreak, and success and Failure
auditing for file access to detect access to sensitive files.

Security attributes of an object in Windows XP are described by asecurity
descriptor. The security descriptor contains the security ID of the owner of
the object (who can change the access permissions), a group security 1D used
only by the POSIX subsystem, a discretionary access-control list that identifies
which users or groups are allowed (and which are not allowed) access, and
a system access-control list that controls which auditing messages the system
will generate. For examnple, the security descriptor of the file foo.bar might have
ewner avi and this discretionary access-control list:

avi—all access
group cs—read ~write access

user cliff —no access

In addition, it might have a system accesscontrol list of audit writes by
everyone.

An access-control list is composed of access-control entries that contain
the security ID of the individual and an access mask that defines all possible
actions on the object, with a value of AccessAllowed or AccessDenied for
each action. Files in Windows XP may have the following access types: Read-
Data, WriteData, AppendData, Executs, ReadExtendedAttribute, Write-
ExtendedAttribute, ReadAttributes, and WriteAttributes. We can see
how this allows a fine degree of control over ac-ess to objects.

Windows XT classifies objects as either container objects or noncontainer
objects. Container objects, such as directories, can logically contain other
objects. By default, when an object is created within a container object, the new
object inherits permissions from the parent object. Similarly, if the user copies a
file from one directory to a new directory, the file will inherit the permissions of
the destination directory. Noncuntainer objects inherit no other permissions.
Furthermore, if a permission is changed on a directory, the new permissicns
do not automatically apply to existing files and subdirectories: the user may
explicitly apply them if she so desires.

The system administrator can prohibit printing to a printer on the system
for all or part of a day and can use the Windows XP Performance Monitor to
help her spot approaching problems. In general, Windows XP does a good job
of providing features to help ensure a secure computing environment. Many of
these features are not enabled by default, however, which may be one reason
for the myriad security breaches on Windows xp systems. Another reason is
the vast number of services Windows XP starts at system boot time and the
number of applications that typically are installed on a Windows XP system,
For a real multiuser environment, the system administrator should formulate
a security plan and implement it, using the features that Window's Xp provides
and other security tools.
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Protection is an internal problem. Security, in contrast, must consider both
the computer svstem and the environment—people, buildings, businesses,
valuable objects, and threats— within which the system is used.

The data stored in the computer system must be protected from unautho-
rized access, malicious destruction or alteration, and accidental introduction of
inconsistency. It is easier to protect against accidental loss of data consistency
than to protect against malicious access to the data. Absclute protection of the
information stored in a computer system from malicious abuse is not possible;
but the cost to the perpetrator can be made sufficiently high to deter most, if
not ali, attempts to access that information without proper authority.

Several types of attacks can be launched against programs and against
individual computers or the masses. Stack- and buffer-overflow techniques
allow successful attackers to change their level of system access. Viruses and
worms are self-perpetuating, sometimes infecting thousands of computers.
Denial-of-service attacks prevent legitimate use of target systems.

Encryption limits the domain of receivers ot data, while authentication
limits the domain of senders. Encryption is used to provide confidentiality
of data being stored or transferred. Symmetric encryption requires a shared
key, while asymmetric encryption provides a public key and a private key.
Authentication, when combined with hashing, can prove that data have not
been changed.

User authentication methods are used to identify legitimate users of a
system. In addition to standard user-name and password protection, scveral
authentication methods are used. One-time passwords, for example, change
from session to session to avoid replay attacks. Two-factor authentication
requires two forms of authentication, such as a hardware calculator with an
activation PIN. Multi-factor authentication uses three or more forms. These
methods greatly decrease the chance of authentication forgery.

Methods of preventing or detecting securily incidents include intrusion-
detection systems, antivirus software, auditing and logging of system events,
monitoring of system software changes, system-call monitoring, and firewalls,.

18.1 Buffer-overflow attacks can be avoided by adopting a better program-
ming methodology or by using special hardware support. Discuss these
solutions.

18.2 A password may become known to other users in a variety of ways. Is
there a simple method for detecting that such an event has occurred?
Explain your answer.

18.3 What is the purpose of using a “salt” along with the user-provided
password? Where should the “salt” be stored, and how should it be
used?

18.4 An experimental addition to UNIX allows a user to connect a watchdog
program to a file. The watchdog is invoked whenever a program
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requests access to the file. The watchdog then either g grants ‘or denies
access to the file. Discuss two pros and two cons of using watchdogs
for security.

18.5 Discuss a means by which managers of systems connected to the
Internet could have designed their systems to limit or eliminate the
damage done by a worm. What are the drawbacks of making the change
that you suggest?

18.6  Argue for or against the judicial sentence handed down against Robert
Morris, Ir, for h1<; creation and execution of the Internet worm discussed
in Section 18.3.1.

18.7 What are two advantages of encrypting data stored in the computer
system?

18.8 What commonly used computer programs are prone te man-in-the-
middle attacks? Discuss solutions for preventing this form of attack.

189 Why doesn’t Dik,. Nt ik, N)m)) provide authentication of the
sender? To what uses can such an encryption be put?

18.10 Discuss how the asymmutric encryption atgorithm can be used to
achieve the following goals,

a. Authentication: the receiver knows that only the sender could
have generated the message

b. Secrecy: only the receiver can decrypt the message.

¢. Authentication and secrecy: only the receiver can decrypt the
message, and the receiver knows that only the sender could
have generated the message.

General discussions concerning security are given by Hsiao et al. [1979],
Landwehr [1981], Denning [1982], Pfleeger and Pllecger [2003], Tanenbaum
2003, and Russeli and Gangemi [1991]. Alse of gt‘ne':al interest 1s the text by
Lobel [1986]. Computer netwaorking is discussed in Kurose and Ross [2005].

Issues concerning the design and vesification of secure systems are dis-
cussed by Rushby [1981] and by Silverman [1983]. A secur m kernel for a
mulnpmccbbor microcomputer is described by Schelt [1983]. A distributed
secure systemn is described by Rushby and Randell [1983].

Morris and Thompson [1979] Jiscuss password security. Morshedian
[1986] presents methods to fzght password pirates. Password authentication
with insccure communications is considered by Lamport [1981]. The issue
of password cracking is examined by Seely [1989]. Computer break-ins are
discussed by Lehmann [1987] and by Reid [1987]. Issues related to trusting
computer programs are discussed in Thempson [1984],

Discussions concerning UNIN security are offered by Grampp and Morris
[1984], Wood and Kochan [1985], Farrow | 1986b], Farrow [1986a, Filipski and
Hanko [1986], Hecht et al. [1988], Kramer [1988], and Garfinkel et ab. [2003].
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Bershad and Pinkerton [1988] present the watchdog extension to BSD UNIX. The
COPs ‘;ecurltv—bcanmns package for UNIX was aritten by Farmer at Purdue
University. It is available to users on the Internet via the FIP program from
host ftp.uu.net in directory /pub/securitv/cops.

Spafford [1989] presents a detailed technical discussion of the Internet
worm. The Spafford article appears with three others in a special section on
the Morrtis Internet worm in Communications of the ACM (Volume 32, Number
6, June 1989).

Security problems associated with the TCP/IP protocol suite are described
in Bellovin [1989]. The mechanisms commonly used to prevent such attacks are
discussed in Cheswick et al. [2(03]. Another appmaLh to protecting networks
from insider attacks is to secure topology or route discovery. Kent et al. [2000],
Hu et al. [2002], Zapata and Asokan [2002], and Hu and Perrig [2004] present
solutions for secure routing. Savage et al. [2000] examine the distributed denial-
of-service attack and propose IP trace-back solutions to address the problem.
Perlman [1988] proposes an approach to diagnose faults when the network
contains malicious routers.

Informaticn  about  viruses and  worms  can be  found  at
http:/ /www.viruslist,com, as well as in Ludwig [1998] and Ludwig
[2002]. Other web sites containing up-to-date security  information
include  http://www.trusecure.com  and  httpd:/ /www.eeyecom. A
paper on the dangers of a computer monoculture can be found at
http:/ /www.ccianet.org/papers/cyberinsecurity.pdf.

Diffie and Hellman [1976] and Diftic and Hellman [1979] were the first
researchers to propose the use of the public-key encryption scheme. The algo-
rithm presented in Section 18.4.1 1s based on the public-key encryption scheme;
it was developed by Rivest et al. [1978]. Lempel [1979], Simmons [1979],
Denning and Denning [1979], Gifford [1982], Denning [1982], Ahituv et al.
[1987], Schneier [1996], and Stallings [2003] explore the use of cryptography in
computer systems. Discussions concerning protection of digital signatures are
offered by Akl [1983], Davies [1983], Denning [1983], and Denning [1984].

The U5, government is, of course, mn(emed about security. The Deparf-
ment of Defense Trusted Computer System Evaluation Criteria (Dol []985]} known
also as the Orange Book, describes a set of security Jevels J.nd the features that
an operating system must have to qualify for each security rating. Reading
it is a good starting point for understanding security concerns. The Microsoft
Windows NT Workstation Resonrce Kit (VIIL]‘OHUH [1‘996] describes the security
model of NT and how to use that model.

The RSA algorithm is presented in Rivest et al. [1978]. Information about
NIST's AES activities can be found at hitp://wwwnist.gov/aes/; informa-
tion about other cryptographic standards for the United States can also
be found at that site. More complete coverage of 551 3.0 can be found at
http:/ /home.netscape.com/eng/ssl3/. In 1999, SSL 3.0t was modified slightly
and presented in an ILTF Request for Comments (RFC) under the name TLS.

The example in Section 18.6.3 illustrating the impact of false-alarm rate
on the effectiveness of 1ss is based on Axelsson [1999]. A more complete
descripiion of the swatch program and its use with syslog can be found
in Hansen and Atkins [1993]. The description of Tripwire in Section 18.6.5 is
based on Kim and Spafford [1993]. Research inte system-call-based anomaly
detection is described in Forrest et al. [1996].






Part Eight

Our coverage of operating-system issues thus far has focused mainly
on general-purpose computing syslems. Thare are, however, special-
purpose: systems with requirements different from thoase of many of the
systerms we have described.

. A real-time system is & cormpuier system that requires not only that
computed results be “corect” but alsc that the results be produced
within a specified deadine pariog. Results produced after the deadiine
has passed—even if conect—may be of no real vaie. For such sys-
tems. many raditional operating-systeny scheduling algonthnis muast be
modified to meet the stringent trming deadines.

A miuitimedia system rimst be able 1o handle not anly conventione!
data, cuch as text fies programs. and word-processiig documents,
but aisc mulimedia data, Mutimedia data consist of continuous-media
data (audic and video? as wol 2¢ converntional data. Continuous-media
date—such as frames of video-—tniust be delivered according to certain
time restrictions for example. 20 frames par second). The demands of
handling continuous-media data require significart changes in operating-
systern struciure. most notably in memaory. disk, and retwork manage-
ment.






